Guest Lecture
Machine Learning in Healthcare

Narges Razavian

Assistant Professor
Departments of Radiology & Population Health NYUMC
narges.razavian@nyumc.org

Machine Learning
November 1st, 2018



This Lecture

Overview of healthcare & landscape of healthcare data

Some snapshots of research on machine learning in healthcare
Early Disease Prediction using EHR time series
Medical Imaging:
Radiology (X-Rays, Mammograms, MRI, Ultrasound)
Pathology (Histopathology)
Microscopy
Genomics and sequences and text

Thoughts on research trends in short and long term in this field.



Healthcare in Numbers

What are the top killer diseases?
What are the diseases people go to doctors for?



“Immature” Causes of Death in 2016, USA

Intentional self-harm (suicide)
2.2%

Nephritis, nephrotic syndrome, and nep...
2.5%

Influenza and pneumonia

2.8%

Diabetes

4.0%

Alzheimer’s disease

5.5%

Stroke (cerebrovascular diseases)
7.0%

Heart disease
31.5%

Accidents (unintentional injuries)
7.3%

Chronic lower respiratory diseases
7.7%

Cancer
29.6%

Source: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm



“Immature” Causes of Death in 2016, USA

Intentional self-harm (suicide)

2.2%

Nephritis, nephrotic syndrome, and nep...

2.5%
Influenza and pneumonia

2.8%
Diabetes

4.0%
Alzheimer’s disease

5.5%
Stroke (cerebrovascular diseases)

7.0%

Accidents (unintentional injuries)

7.3%

Chronic lower respiratory diseases

7.7%

Heart disease

31.5%

Heart disease: 635,260

Cancer: 598,038

Medical Errors*: 251,454

Chronic lower respiratory diseases: 154,596
Cancer
29.6%

Source: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
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NYU Medical School - de-identified database i2b2 (2
years ago)

B Unique
221,209,204 Facts

B Unige
130,740,659 Patients

(LOINC) Clinical Categories §™7 550550

(LOINC) Laboratory Categories 1,509,328

Demographics 5427 628 93,757,719

Encounters RN 49,502,184
ICD10CM_2015AA §™5%553 704 34,572,742
35,588,803

ICD9CM 57577 %56

118,495,633
Laboratory Results 1,528,275

Medications 7’798'73275,075,924

33,190,379
Procedures 1925866

0 50,000,000 100,000,000 150,000,000 200,000,000 250,000,000



Diseases
Certain conditions originating in the perinatal period
Certain infectious and parasitic diseases
Congenital malformations, deformations and chromosomal abnormalities
Diseases of the blood/blood-forming organs and disorders of the immune mechanism
Diseases of the circulatory system
Diseases of the digestive system
Diseases of the ear and mastoid process
Diseases of the eye and adnexa
Diseases of the genitourinary system
Diseases of the musculoskeletal system and connective tissue
Diseases of the nervous system
Diseases of the respiratory system
Diseases of the skin and subcutaneous tissue
Endocrine, nutritional and metabolic diseases
External causes of morbidity
Factors influencing health status and contact with health services
Injury, poisoning and certain other consequences of external causes
Mental, behavioral and neurodevelopmental disorders
Neoplasms
Pregnancy, childbirth and the puerperium

A
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Procedures

B Unique Facts

. 335,130
Anesthesia g 194758 B Unique Patients
Category Il Codes 14:73'1120
Category lll Codes 13123311

Evaluation and
Management Servic...

11,666,119
1,517,413

Medicine Services
and Procedures

6,828,091
902,899

Pathology and
Laboratory Procedur...

3,100,177
464,409

Radiology

13,399,297
Procedures

1,304,062

Surgery S— 360,338

0 5,000,000 10,000,000 15,000,000



Healthcare in Action

What happens Where and When?
What’s the constraints of each location?



Overview of Healthcare in Action

_—~MAIN EMERGENCY ENTRANCE

VENDING\‘ % EMERGENCY WAITING
] T D EMERGENCY DEPARTMENT Emergency Dept: Triage &
Stabilization
! ->  Bleeding/pain/etc
=> internal/external problems
T HEPICAL IAGING - Patient awake or
unconscious
CARDIO PULMONARY ] K .
| mebioas - Quick diagnosis needed
OR WAITING — |~ WAITING | 1 ]—"-'90°°R Localization of main cause
e iy - Quick action to give patient
STAIR .
L_I " Jeteuaron GD/ELEVATOR tlme

= r11 s JI STAR - Can be: Fast, Noisy, Loud,

1 | — .

Mechanical
LAB WAITING | reg
INFUSION CENTER | [~ Rrec
i
- .:.: i OUTPATIENT
SGPIB]I; PROCEDURES
MAIN ENTRANCE
[ " NART EXHIBIT WALL”
RESTROOMS
W /




Overview of Healthcare in Action
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Outpatient: Diagnosis, Curing and
Prevention

More time to diagnose

Often symptoms aren’t
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Need to track medication
response or Prevent s.th.

vl

-
>
B




Overview of Healthcare in Action
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Overview of Healthcare in Action
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Pathology: Confirmations of Serious diagnosis

>

Most cancers,

-> Tissues, cells and Microscopic imaging
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Diverse Data Modalities



Diverse Modalities: Text and Structured data Time
Series (NYU Data)

B Unique
221,209,204 Facts

B Unige
130,740,659 Patients

(LOINC) Clinical Categories 1,520,850

(LOINC) Laboratory Categories 1,509,328

Demographics 5427 628 93,757,719

49,502,184

Encounters 2383317

34,572,742

ICD10CM_2015AA {57553 704

35,588,803
ICD9CM 57577 %56

118,495,633
Laboratory Results 1528275

Medications 7’798'73275,075,924

33,190,379
Procedures 1925866

0 50,000,000 100,000,000 150,000,000 200,000,000 250,000,000



Diverse Modalities: Images

Computed tomography, maxillofacial area

0.8%
Magnetic resonance angiography, head

0.9%
Magnetic resonance (eg, proton) imaging, abdomen

2.0%
Radiologic examination, abdomen

2.2%
Computed tomography, head or brain

3.3%
Dual-energy X-ray absorptiometry (DXA), bone density study, 1 or more sites

3.9%
Diagnostic Nuclear Medicine Procedures

4.6%
Bone/Joint Studies

4.8%

Magnetic resonance (eg, proton) imaging, brain (including brain stem)

5.2%

Computed tomography, thorax

330,748

351,016

378,170

413,525

5.7%

Computed tomography, abdomen and pelvis

1,117,349

5.8%

(NYU data

2,886,893

Diagnostic Ultrasound Procedures

39.8%

Breast, Mammography

15.4%



Diverse Modalities:

Harmonized Cancer Datasets
Genomic Data Commons Data Portal

Get Started by Exploring:

I} Projects %% Exploration @& Analysis S

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Summary pata Release 10.1 - February 15, 2018

PROJECTS PRIMARY SITES

40 e 61

FILES GENES

(310,859 £ 22,147

Genomics (Public GDC data)

Repository

CASES

& 32,555

MUTATIONS

4 3,142,246




What else?



Questions that Could Use More ML in Healthcare

Early detection, Detection, and Prevention
Automated/Augmented Diagnosis/screening & Lowering medical errors
Finding new bio-makers, less invasive, more specific & sensitive, scalable
Better clinical trial recruitment - faster drug design

Tracking Treatment Response and Disease Progression
Finding, measuring, and visualizing biomarker & changes over time

Low resource settings & where time is limited i.e. ED department
Prioritization of patients

Lowering missed diagnosis - augmented diagnosis, automations, etc

What else?



Some snapshots of research on machine
learning in healthcare



Early Disease Prediction using
EHR time series



Demographic and lifestyle

Electronic Health Records

Time

Medications:

-NDC code (drug name)
-Quantity

-Date of fill

Encounters

-Free Text Notes
-Diagnosis code (ICD10s)
-Procedure (CPTs)
-Specialty

-Location of service
-Service Provider ID
-Inpatient/outpatient
-Cost

Radiology Imaging:

- MR, CT, PET, etc.

- Free Text (Radiology
notes)

- Assessment codes

Pathology:

Lab Tests:

-LOINC code (urine or blood test name)
-Results (actual values/Flags)

-Date

- Microscopic images (histopathology)
- Genetic test
- Free text assessments
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Disease Prediction/Forecasting

Time




Space of machine learning methods

Complex features

Feature interactions

Specified by human experts

- Standard Regression
- Rule Based Expert Systems

Specified | Bayesian networks
by human
experts Parameters: Few
Data Needed: Small
- Bayesian networks with hidden
variables
- Dimensionality reduction -
+Learned | PCA/ICA

Parameters: Medium
Data Needed: Medium

+|Learned

- Decision Trees

- Bayesian networks with
structure learning

- Random Forests

Parameters: Medium
Data Needed: Medium/large

- Deep learning

Parameters: Larges
Data Needed: Large/X-Large



Disease Prediction/Forecasting

Time




Electronic Health Records

Time

Rl R

The ests:
! Model C code (urine or blood test name)
T PET e.c ' ults (actual values/Flags)

ext (Radiology €

ment codes

Patho
- Microscopic images (histopathology)
- Genetic test

- Free text assessments




Feature Engineering: ~42,000 features

22 39 990 16,632 233 224 7x1000 228 32
indicator for indicator for each l Laboratory indicators for:
using icd9 diagnosis o Test request
Medication indicator for Test value high
groups each CPT  Test value low

group Test value normal
coverage indicator for Test value increasing
each ICD-9 Test value decreasing
Diabetes known p:gﬁedures Test value fluctuating
risk factors group Indicator for
each
 All variables except ICD-9 diagnosis evaluated in 6 specialty

months, 2 years and entire history prior to T2D onset. Indicator for each
service place

Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors
https://www.liebertpub.com/doi/abs/10.1089/big.2015.0020



Learning features and Deep Learning/Multitask learning

batchnorm
+Log Softmax
Max Conv . —_—
Pl Rl O (Y =Tlinput)
labs |* =
5 onv o .
c e +batchnorn . o—P(Y,=1|input)
D +RelLU !
c ! e
Convolution i I _
InpUt +batchnorm Conv ;.- — O— P(YM=1|InPu1‘)
o +RelU Max | +batchnorm
Pool +RelU
) Y ) 2 Layers of
Temporal convolution in 3 Dropout + Fully
resolutions. connected

+RelLU
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Long Short Term
Memory Recurrent
Units

batchnorm
+Log Softmax

O-P(Y,=1linput)

. oP(Y,=1linput)

gl
\ ) 11

2 Layers of o P(Yy=Tlneut
Dropout + Fully connected
+RelLU

Connected to the last

LSTM memory unit



Prediction Quality on the test set of size 98,000 individuals

ICD9 Code and disease description LR LSTM CNN1 CNN2 Ens Pos

585.6 End stage renal disease 0.886 0.917 0.910 0.916 0.920 837

285.21 Anemia in chr kidney dis 0.849 0.866 0.868 0.880 0.879 1598
585.3 Chr kidney dis stage 111 0.846 0.851 0.857 0.858 0.864 2685
584.9 Acute kidney failure NOS 0.805 0.820 0.828 0.831 0.835 3039
250.01 DMI wo cmp nt st uncntrl 0.822 0.813 0.819 0.825 0.829 1522
250.02 DMII wo cmp uncntrld 0.814 0.819 0.814 0.821 0.828 3519
593.9 Renal and ureteral dis NOS 0.757 0.794 0.784 0.792 0.798 2111
428.0 CHF NOS 0.739 0.784 0.786 0.783 0.792 3479
V053 Need prphyl vec vrl hepat 0.731 0.762 0.752 0.780 0.777 862

790.93 Elvtd prstate spcf antgn 0.666 0.758 0.761 0.768 0.772 1477
185 Malign neopl prostate 0.627 0.757 0.751 0.761 0.768 761

274.9 Gout NOS 0.746 0.761 0.764 0.757 0.767 1529

362.52 Exudative macular degen 0.687 0.752 0.750 0.757 0.765 538
607.84 Impotence, organic orign 0.663 0.739 0.736 0.748 0.752 1372
511.9 Pleural effusion NOS 0.708 0.736 0.742 0.746 0.749 2701
616.10 Vaginitis NOS 0.692 0.736 0.736 0.746 0.747 440
600.01 BPH w urinary obs/LUTS 0.648 0.737 0.737 0.738 0.747 1681
285.29 Anemia-other chronic dis 0.672 0.713 0.725 0.746 0.739 1075
346.90 Migrne unsp wo ntrc mgrn 0.633 0.736 0.710 0.724 0.732 471

427.31 Atrial fibrillation 0.687 0.725 0.728 0.733 0.736 3766
250.00 DMII wo cmp nt st uncntr 0.708 0.718 0.708 0.719 0.728 3125
425.4 Prim cardiomyopathy NEC 0.683 0.718 0.719 0.722 0.726 1414
728.87 Muscle weakness-general 0.683 0.704 0.718 0.722 0.723 4706
620.2 Ovarian cyst NEC/NOS 0.660 0.720 0.700 0.711 0.719 498

286.9 Coagulat defect NEC/NOS 0.690 0.694 0.709 0.715 0.718 958




Overview of some results so far on general NYUMC patient cohort

10ccs186:DM in preg ors0n . /I;leJt(r:ospective

10ccs29:Prostate can 04015 B AUC

10ccs174:Fem infertil 05 B prospective
10ccs171:Menstrual dx %503t

10cCsT08:ChfNoNhp I AmaTST%
10ccs654 lang and dev disorders | h0, Shy0 1%
10CCST58:Chr ren fail . B9.14%
10ccs158.5:Chr ren fail stage 5+ I o  01.38%
10ccs50 DiabMel W/ o I D | 90.37%

10ces157:Ac renl fail S Y /) 040

10ccs655 anxiety disorder p——— c.21%

10ccs26:Cervix Cancr p————  55.59%
10ccs173:Menopaus| dx e | 85.55%

Disease

10cCs652 hyperactivily I — s 85.00%

. —  50.96%
10ccs 25 Uterus CanCr —— 84.40%

10ccs653: Alzheimer's and Dementia I — — ey B561%

; I 5.
10CCS24:Breast CanCr I —— D 00 0 o00%

10cCsT99:UlCer SKin | anTImmD  86.42%
10ccs101:Coron athero . B4-45%

10cCs79:Parkinson-s e 87.62%
10ccs99:Htn complicn p—" 52.17%
10cCs172:0varian Cyst e | 82:11%

10ccs107:Cardia arrst s 50 94%

86.65%

. S 2
10ccs40:Mult myeloma —  §1.19%

75.00% 80.00% 85.00% 90.00% 95.00% 100.00%



Applicable to many more outcomes and tasks

Early prediction of childhood obesity

Predicting diabetes complications

Predicting risk of re-hospitalization

Detecting undocumented but existing diseases
Using lab values only to predict future diseases
Predicting medication adherence

Predicting no-shows

Etc. etc. etc....

e Many industries interested: Hospitals, Insurance companies, Government
Medicare/Medicaid, Center for Disease Control, etc.



Medical Imaging:
Radiology (X-rays, Mammograms, MRI, Ultrasound)

Pathology
Microscopy



Plain X-Rays or Radiographs

Most common & oldest type of radiology image.

Projectional radiography

Great to show Carbon vs. Calcium

Good for: Bones, Teeth, Chest X-Rays,
Mammography, Abdominal X-ray.

Result: 2D image
Risks: Radiation exposure

Opportunities in research:
e Augmented/automatic Diagnosis
e Lowering X-ray dosage




Related Papers on Bone X-Ray Radiographs

MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

MURA: Large Dataset for Abnormality Detection in
Musculoskeletal Radiographs

Pranav Rajpurkar’ *, Jeremy Irvin"*, Aarti Bagul!, Daisy Ding!, Tony Duan',
Hershel Mehta', Brandon Yang', Kaylie Zhu!, Dillon Laird', Robyn L. Ball?,
Curtis Langlotz?, Katie Shpanskaya®, Matthew P. Lungren® f, Andrew Y. Ng! f

* TEqual Contribution

! Department of Computer Science
Stanford University
{pranavsr, jirvini6}@cs.stanford.edu

2Department of Medicine
Stanford University
rball@stanford.edu

3Department of Radiology
Stanford University
mlungren@stanford.edu

ics.med-ph] 22 May 2018



MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

Task: determining whether an X-ray study is normal or abnormal.
Motivation:
e Musculoskeletal conditions affect more than 1.7 billion people worldwide,
e 30 million emergency department visits annually
Data (Public):
e 14,863 studies from 12,173 patients, with a total of 40,561 multi-view
radiographic images.
e Includes: elbow, finger, forearm, hand, humerus, shoulder, and wrist

e Labels from Stanford Hospital (from 2001 to 2012)
Baseline: ;

e DenseNet-169 with Multi-task Cross Entropy Loss
Evaluation:

e C(Cohen’s kappa statistic




MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

Leaderboard

Will your model perform as well as radiologists in detecting
abnormalities in musculoskeletal X-rays?

Rank Date Model Kappa

Best Radiologist Performance Stanford University ~ 0.778
Rajpurkar & Irvin et al., 17

1 PP LGN base-comb3(ensemble) jtz Availink 0.805
2 RV LIEN  double_res(ensemble model) SCU_MILAB 0.804
3 Jul 24, 2018 he_j 0.775
4 PICEERLEEN  ianpan (ensemble) RIH 3D Lab 0.774
5 Jul 24, 2018 he_j 0.774

Jun 17,2018 gcm (ensemble) Peking University 0.773
6 O ELPLIEN  ty101 single model 0.773
7 Aug 31,2018 [T 0.764

7 POCEIPIIER  AlAPlus (ensemble) Taiwan Al Academy 0.764
http://aiacademy.tw

8 AW  SER_Net_Baseline (single model) S/TU 0.764

(o)}

9 Jul 14, 2018 Trs (single model) SCU_MILAB 0.763



Related paper on Chest X-rays

“ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common Thorax Diseases”

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common Thorax Diseases

Xiaosong Wang', Yifan Peng 2, Le Lu !, Zhiyong Lu 2, Mohammadhadi Bagheri !, Ronald M. Summers *
Department of Radiology and Imaging Sciences, Clinical Center,
2 National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD 20892

{xiaosong.wang, yifan.peng, le.lu, luzh, mohammad.bagheri, rms}@nih.gov

Abstract
The chest X-ray is one of the most commonly accessi-
ble radiological inations for sc ing and diagnosis
of many lung di. At d ber of X-ray 4
imaging studies panied by radiological reports are Atelectasis | Cardiomegaly Effusion Infiltration

accumulated and stored in many modern hospitals’ Pic-
ture Archiving and Communication Systems (PACS). On
the other side, it is still an open question how this type
of hospital-size knowledge datal c ining invaluabl
imaging informatics (i.e., loosely labeled) can be used to fa-
cilitate the data-hungry deep learning paradigms in build-
ing truly large-scale high precision computer-aided diagno- Figure 1. Eight common thoracic diseases observed in chest X-rays
sis (CAD) systems. that validate a challenging task of full; d diagnosi:

Mass Nodule Pneumonia | Pneumothorax




“ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common Thorax Diseases”

Task: Identification & Localization of Thorax Diseases.
Motivation: Reducing medical errors and improving “incidental finding” success.
The data:

e 108,948 frontal view X-ray images of 32,717 unique patients

e Labels from radiology reports. (8 disease labels)

Evaluation: AUC

Baseline: Standard imaging models up to 2017



“ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on
Weakly-Supervised Classification and Localization of Common Thorax Diseases”

[ Setting | Atelectasis | Cardiomegaly | Effusion | Infiltration [ Mass | Nodule | Pneumonia | Pneumothorax |
Initialization with different pre-trained models
AlexNet 0.6458 0.6925 0.6642 0.6041 0.5644 | 0.6487 0.5493 0.7425
GoogLeNet 0.6307 0.7056 0.6876 0.6088 0.5363 | 0.5579 0.5990 0.7824
VGGNet-16 0.6281 0.7084 0.6502 0.5896 0.5103 | 0.6556 0.5100 0.7516
ResNet-50 0.7069 0.8141 0.7362 0.6128 0.5609 | 0.7164 0.6333 0.7891
Item # | Openl | Ov. | ChestX-ray8 | Ov. Different multi-label loss functions
Report 2.435 - 108,948 - CEL 0.7064 0.7262 0.7351 06084 | 0.5530 | 0.6545 | 05164 0.7665
Antictaione: | 2435 | - N . W-CEL 0.7069 0.8141 07362 | 06128 | 0.5609 | 0.7164 | 0.6333 0.7891
Atelectasis 315 | 122 5789 | 3,286 Table 3. AUCs of ROC curves for multi-label classification in different DCNN model setting.
Cardiomegaly 345 | 100 1,010 475 [ T(IoBB) | Atelectasis | Cardiomegaly | Effusion | Infiltration | Mass | Nodule | Pneumonia | Pneumothorax |
Effusion 153 94 6,331 | 4,017 T(IoBB) =0.1
Infiltration 60 45 10,317 | 4,698 Acc. 0.7277 0.9931 0.7124 0.7886 0.4352 | 0.1645 0.7500 0.4591
AFP 0.0823 0.0487 0.0589 0.0426 0.0691 | 0.0630 0.0691 0.0264
Mass 15 4 6,046 | 3,432 - p
T(IoBB) = 0.25 (Two times larger on both x and y axis than ground truth B-Boxes)
Nodule 106 | 18 1,971 | 1,041 Acc. 0.5500 0.9794 05424 | 05772 | 02823 | 00506 | 05583 0.3469
Pneumonia 40 | 15 1,062 | 703 AFP 0.1666 0.1534 0.1189 0.0914 | 0.0975 | 0.0741 0.1250 0.0487
Pneumothorax 22 11 2,793 | 1,403 T(IoBB) = 0.5
Normal 1,379 0 84,312 0 Acc. 0.2833 0.8767 0.3333 0.4227 0.1411 | 0.0126 0.3833 0.1836
AFP 0.2703 0.2611 0.1859 0.1422 0.1209 | 0.0772 0.1768 0.0772
T(IoBB) = 0.75
Acc. 0.1666 0.7260 0.2418 0.3252 0.1176 | 0.0126 0.2583 0.1020
AFP 0.3048 0.3506 0.2113 0.1737 0.1310 | 0.0772 0.2184 0.0873
T(IoBB) = 0.9
Acc. 0.1333 0.6849 0.2091 0.2520 0.0588 | 0.0126 0.2416 0.0816
AFP 0.3160 0.3983 0.2235 0.1910 0.1402 | 0.0772 0.2317 0.0904
lable 4. Pathology localization accuracy and average false positive number for 8 disease classes.



Follow-up: CheXNet (Also a DenseNet model)

1.05225v3 [cs.CV] 25 Dec 2017

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays

with Deep Learning

Pranav Rajpurkar“! Jeremy Irvin®! Kaylie Zhu! Brandon Yang! Hershel Mehta!
Tony Duan! Daisy Ding! Aarti Bagul! Robyn L. Ball?> Curtis Langlotz® Katie Shpanskaya?

Matthew P. Lungren® Andrew Y. Ng!

Abstract

We develop an algorithm that can detect
pneumonia from chest X-rays at a level ex-
ceeding practicing radiologists. Our algo-
rithm, CheXNet, is a 121-layer convolutional
neural network trained on ChestX-ray14, cur-
rently the largest publicly available chest X-
ray dataset, containing over 100,000 frontal-
view X-ray images with 14 diseases. Four
practicing academic radiologists annotate a
test set, on which we compare the perfor-
mance of CheXNet to that of radiologists.
We find that CheXNet exceeds average ra-
diologist performance on the F1 metric. We
extend CheXNet to detect all 14 diseases in
ChestX-ray14 and achieve state of the art re-
sults on all 14 diseases.

1. Introduction

raa’

Input
Chest X-Ray Image

Pathology Wang et al. (2017) Yao et al. (2017) CheXNet (ours)
Atelectasis 0.716 0.772 0.8094
Cardiomegaly 0.807 0.904 0.9248
Effusion 0.784 0.859 0.8638
Infiltration 0.609 0.695 0.7345
Mass 0.706 0.792 0.8676
Nodule 0.671 0.717 0.7802
Pneumonia 0.633 0.713 0.7680
Pneumothorax 0.806 0.841 0.8887
Consolidation 0.708 0.788 0.7901
Edema 0.835 0.882 0.8878
Emphysema 0.815 0.829 0.9371
Fibrosis 0.769 0.767 0.8047
Pleural Thickening 0.708 0.765 0.8062
Hernia 0.767 0.914 0.9164

CheXNet
121-layer CNN

Output

Pneumonia Positive (85%)

F1 Score (95% CI)

Radiologist 1
Radiologist 2
Radiologist 3
Radiologist 4

0.383 (0.309, 0.453
0.356 (0.282, 0.428
0.365 (0.291, 0.435

Radiologist Avg.
CheXNet

0.387 (0.330, 0.442
0.435 (0.387, 0.481

—_— [

(
(
0.442 (0.390, 0.492
(
(




Criticism of the Dataset (Applies to most datasets)

Labels aren’t accurate

Fibrosis

2 HN PN
P PR S P P
LI I Lk el

Read:https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-datas
et-problems/



https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/
https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-dataset-problems/

Mammograms: Low-dose X-Rays

Screening Mammograms: 4 images
Diagnostic Mammograms: More than
4 images

Currently recommended once every 2
years for every 50-74 yo women.

Does not work for dense breasts.
(Many young patients or asian
ethnicities)

e Ultrasound



Related paper on automatic Mammography Screening

03.07047v3 [cs.CV] 28 Jun 2018

High-Resolution Breast Cancer Screening with
Multi-View Deep Convolutional Neural Networks

Krzysztof J. Geras!'®, Stacey Wolfson®, Yigiu Shen!, Nan Wu!, S. Gene Kim**, Eric Kim3,
Laura Heacock®, Ujas Parikh3, Linda Moy®, Kyunghyun Cho':%5

Abstract—Advances in deep learning for natural images have
prompted a surge of interest in applying similar techniques to
medical images. The majority of the initial attempts focused
on replacing the input of a deep convolutional neural network
with a medical image, which does not take into consideration
the fundamental differences between these two types of images.
Specifically, fine details are necessary for detection in medical
images, unlike in natural images where coarse structures matter
most. This difference makes it inadequate to use the existing
network architectures developed for natural images, because
they work on heavily downscaled images to reduce the memory
requirements. This hides details necessary to make accurate
predictions. Additionally, a single exam in medical imaging often
comes with a set of views which must be fused in order to
reach a correct conclusion. In our work, we propose to use a
multi-view deep convolutional neural network that handles a
set of high-resolution medical images. We evaluate it on large-
scale mammography-based breast cancer screening (BI-RADS
prediction) using 886,000 images. We focus on investigating the
impact of the training set size and image size on the prediction
accuracy. Our results highlight that performance increases with
the size of training set, and that the best performance can only
be achieved using the original resolution. In the reader study,
performed on a random subset of the test set, we confirmed the
efficacy of our model, which achieved performance comparable
to a of radiologists when pr d with the same
data.

Index Terms—breast cancer screening, deep convolutional neu-
ral networks, deep learning, learning, aphy

screening interval for mammograms has been the subject of
public debate with different professional societies offering
varying guidelines for mammographic screening [2], [3], [4],
[5]. In particular, there has been public discussion regarding
the potential harms of screening. These harms include false
positive recalls and false positive biopsies as well as anxiety
caused by recall for diagnostic testing after a screening exam.
Overall, the recall rate following a screening mammogram is
between 10-15%. This equates to about 3.3 to 4.5 million
callback exams for additional testing [6].

The vast majority of the women asked to return following
an inconclusive mammogram undergo another mammogram
and/or ultrasound for clarification. Most of these false positive
findings are found to represent normal breast tissue. Only
10% to 20% of women who have an abnormal screening
mammogram are recommended to undergo a biopsy. Only
20-40% of these biopsies yield a diagnosis of cancer [7]. In
2014, over 39 million screening and diagnostic mammography
exams were performed in the US. Therefore, in addition to
the anxiety from undergoing a false positive mammogram,
there are significant costs associated with unnecessary follow
ups and biopsies. Clearly, there is an unmet need to shift
the balance of routine breast cancer screening towards more
benefit and less harm.



High-Resolution Breast Cancer Screening with
Multi-View Deep Convolutional Neural Networks

Data: 886,000 images, 129,208 unique patients

| BI-RADS 0 BI-RADS 1 BI-RADS 2
Training 21946 /1 95471 74832/ 327035 67446 / 298680
Validation | 2634 /11471 11542 / 50627 10376 / 46178
Test 1341 / 5871 5986 / 26213 5595 /24891

Labels: BI-RADs scores
Baseline: Custom CNN

Evaluation: AUC & Reader Study

radiologists MV-DCN radiologists +
1 ‘ MV-DCN
0 vs. others 0.650 0.547 0.653
1 vs. others 0.765 0.757 0.792
2 vs. others 0.699 0.759 0.759
macAUC 0.704 0.688 0.735

[ layer || kernel size || stride [[ #maps || repetition |
[ global average pooling [ 256 7
| convolution || 3x3 [[ IxI ][ 25 ] x3 |
max pooling 2x2 2%2 128
convolution 3x3 Ix1 128 x3 ]
max pooling 2x2 2X2 128
convolution 3x3 1x1 128 x 3 |
max pooling 2x2 2X2 64
convolution 3x3 1x1 64 X 2 |
convolution 3x3 2x2 64
max pooling 3x3 3x3 32
convolution 3x3 2x2 32
l input 1 ]

Fig. 2. Description of one deep convolutional network column for a single
view. It transforms the input view (a gray-scale image) into a 256-dimensional
vector.

| Classifier p(y[z) |
[ Fully connected Iayer (1024 hidden units) |
[ Concatenation (256x4 dim) |
DCN DCN DCN DCN
[ LCC [ RCC [ L-MLO [ R-MLO |
Fig. 3. An overview of the proposed multi-view deep convolutional network.

DCN refers to the convolutional network network column from Figure 2. The
arrow indicates the direction of information flow.




Magnetic Resonance Imaging (MRI)

Watch (25 mins): https://www.youtube.com/watch?v=djAxjtN_7VE

Protons (Hydrogen nuclei) rotate randomly.

A rotating positive charge creates magnetic field.

If put under a bigger magnetic field, the proton spins somewhat lines-up.

If exposed to radio-frequency proportional to the magnetic field, they flip.
As the radio-frequency is removed, they emit a measurable signal (Phase &

Frequency & Magnitude) as they go back. RN

(@)

(@)

(@)
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Fat has different reaction to this removal vs Water PRIV I H™""H
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Pulse Sequence: Order of applying and removing radio-frequency.
Can localize each measured signal by creating asymmetric large magnetic waves.
MRI signal is originally captured in Fourier Space

Currently 1.5 T, 3T, 7 Tesla clinically available.


https://www.youtube.com/watch?v=djAxjtN_7VE

Pulse Sequences: T1vs T2 vs FLAIRvs DTl vs ...

T1:

Brighter: Fat and
Contrast agents

Darker: Higher water
content: (edema, tumor,
infarction, inflammation,
infection, hemorrhage)

T2:
Brighter: Water
Darker: Fat tissue

FLAIR: High signal in
stroke, multiple
sclerosis (MS)
plaques,
subarachnoid
haemorrhage and
meningitis.

DTI:

Measures of
Brownian motion of
water molecules
Can image direction
of nerve fibers
Useful for tumor
deformation studies



MRI is originally in Fourier Space - called K-Space




Missing data ir?)K-space leads to pixel space artifacts
a A%
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Issues and Potentials for Research

Improving Acquisition time & Image reconstruction
15/20 minutes stuck inside a tube: too long!

Diagnosis and automation:
2D and 3D classifiers, localization, segmentation
Time series alignment, classification, visualization

Advanced Imaging Invention
MRI fingerprinting and diagnosis



Segmentation of MRIs: Brain
“QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds”

QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab and Christian Wachinger

Affiliations:

A. Guha Roy, C. Wachinger
Laboratory for Artificial Intelligence in Medical Imaging (Al-Med),
Department of Child and Adolescent Psychiatry, Psychosomatic and
Psychotherapy,
Ludwig-Maximilian-University,
Waltherstr. 23, 80337 Munich, Germany

A. Guha Roy, S. Conjeti, N. Navab
Chair for Computer Aided Medical Procedures, Department of Informatics
Technical University of Munich,
Boltzmannstr. 3, 85748 Garching, Munich, Germany.

S. Conjeti
German Center for Neurodegenerative Diseases (DZNE)



“QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds”

Motivation:

e Accurate brain structural segmentation is central to
nearly all neuroimaging analyses.
e Freesurfer takes 2-4 hours to segment a volume.

Task: Segmentation of 40+ regions per volume

Data: ADNI Auxiliary data & MICCAI brain segmentation
challenge (30 manual segmented volumes)

Baseline: Variant of U-net

Loss function: Weighted cross entropy & Weighted Dice
|OSS  bice - 2 Imask 0 predictionl

" |mask| + |prediction|




Dense Block

K |1.]| Batch Normalization _/ RelU

(a) QuickNAT Architecture



Coronal

3D Whole Brain Segmentation

(b) Multi-View Aggregation
for final prediction
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(ii) QuickNAT
(Only Manual)

(iv) QuickNAT
(Fine-tuned)




“End-To-End Alzheimer’'s Disease Diagnosis and Biomarker

|dentification”
https://arxiv.org/pdf/1810.00523.pdf

End-To-End Alzheimer’s Disease Diagnosis
and Biomarker Identification

Soheil Esmaeilzadeh®, Dimitrios Ioannis Belivanis?,
Kilian M. Pohl?, and Ehsan Adeli’

!Stanford University —2SRI International
{soes, dbelivan, eadeli}@stanford.edu kilian.pohl@sri.com

Abstract. As shown in computer vision, the power of deep learning lies
in automatically learning relevant and powerful features for any perdition
task, which is made possible through end-to-end architectures. However,
deep learning approaches applied for classifying medical images do not
adhere to this architecture as they rely on several pre- and post-processing
steps. This shortcoming can be explained by the relatively small number
of available labeled subjects, the high dimensionality of neuroimaging
data, and difficulties in interpreting the results of deep learning methods.
In this paper, we propose a simple 3D Convolutional Neural Networks
and exploit its model parameters to tailor the end-to-end architecture
for the diagnosis of Alzheimer’s disease (AD). Our model can diagnose
AD with an accuracy of 94.1% on the popular ADNI dataset using only
MRI data, which outperforms the previous state-of-the-art. Based on the
learned model, we identify the disease biomarkers, the results of which
were in accordance with the literature. We further transfer the learned
model to diagnose mild cognitive impairment (MCI), the prodromal stage
of AD, which yield better results compared to other methods.

3vl [cs.CV] 1 Oct2018


https://arxiv.org/pdf/1810.00523.pdf

“End-To-End Alzheimer’'s Disease Diagnosis and Biomarker

|dentification”

Task: Differentiate between AD, MCI, Normal

Dataset: ADNI (publicly available) -

Table 1: ADNI-1 subjects demographic in-

formation.
g 5 % Age
O “ 8 meantstd min 25% 50% 75% max

AD M 97 75.0£7.9 55.2 70.8 75.3 80.4 91.0
F 103 76.1+£7.4 56.5 71.1 77.0 82.3 87.9

MCI M 265 75.447.3 54.6 71.0 75.4 80.7 89.8
F 146 73.6£7.5 55.2 69.1 74.3 79.7 86.2

NC M 112 76.14+4.7 62.2 72.5 75.8 78.5 89.7
F 118 75.845.2 60.0 72.1 75.6 79.1 87.7

Architecture: 3D CNN - vanilla 3D

small-ish

@ ' 'a ”f”i 280
" & I’ PPPs 7+ o

Output

Input
Fig. 2: 3D- CNN a.rchltecture used in this paper. The blue cubes (L1, L2, L4, Ls, L,
and Lg) are convolutional layers; Orange cubes (Ls, Ls, and Lg) are max-pooling layers;
and the last two layers are fully connected (FC) layers.



Results & Visualizations

Table 2: Ablation tests: testing performance comparison of different models (last row is D) © Critical
our model). The comparison includes the Accuracy (Acc), F» score, Precision (Pre), and (a) (

Recall (Rec) of all methods (Reg: Regularization, D/O: Drop-Out, Aug: Augmentation). T ]

Simple Complex » o |

Model Acc% F» Pre Rec Acc% F: Pre Rec : o - " £

3D-CNN 68.7 0.71 068 0.72 66.5 0.69 0.67 0.70 - il .

3D-CNN+Reg 776 077 074 0.78 774 075 0.72 0.76 .

3D-CNN+Reg+D/O 83.1 0.811 0.78 0.82 79.7 0.82 079 0.84 N itical

3D-CNN-+Reg+D/O+Aug (Ours) 94.1 0.93 0.92 0.94 883 089 088 0.91 onzcatica

Fig. 4: Relative importance of different voxels associated with AD diagnosis.

Table 3: Comparisons with prior works i Miﬁj
for AD diagnosis. Y !
Method Modalities Acc% Sen Spe S o ;EM
[12] MRI+PET 857 099 0.54 i a Table 4: Testing performance for three-class Alzheimer classification.
8 o o He B s e e Acc Fszlmpl;re Rec  Acch (I?‘-lz)mpll?’):e Rec
(10] MRI 911 088 093 Fig. 3: (Left) training loss s (Right) 3D-CNN+D/O+Reg+with learning transfer 61.1 0.62 0.59 0.63 572 059 055 061
[5] MRI 93.9 094 093 3D-CNN+D/O+Reg+w/o learning transfer  0.54 534 049 0.55 48.3 050 045 0.52

training-validation accuracies with respect
Ours MRI 94.1 094 091 to the number of epochs for our 3D-CNN.




Ultrasound Imaging or Sonography

Sound waves with frequencies - higher than those audible to humans (>20,000
Hz)
provides images in real-time

No radiation and portable
Limits on its field of view: Difficult to ‘see’ behind Bones and Air (for now)

Can be used to see: Elasticity of tissue, 3D shape, Tissue maps

‘ reflected wave
Breast

/ 3
/ s tissue

| Breast
I cyst

Sender/ j)

Receiver |

original wave' .
I ]

distance r

\ Right 12




Related work on Segmenting Tumors in Ultrasound

“‘Automated and real-time segmentation of suspicious breast masses using
convolutional neural network”
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955504/

| View this Article | Submit to PLOS | Get E-Mail Alerts | Contact Us |

PLoS One. 2018; 13(5): 0195816. PMCID: PMC5955504
Published online 2018 May 16. doi: [10.1371/journal.pone.0195816] PMID: 29768415

Automated and real-time segmentation of suspicious breast masses using
convolutional neural network
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https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955504/

“Automated and real-time segmentation of suspicious breast
masses using convolutional neural network”

Motivation: Detection and Localization of tumors

Model: Standard U-Net

BI-RADS distribution of patients in training/validation and test sets.

.
D a ta . BI-RADS No. of Patients in Training and Validation Set No. of Patients in Testing Set

2 3 i
3 2 10
4 155 35
5 41 15
6 6 0

Evaluation: Dice Loss

Metrics All cases (n=  Benign (n=  Malignant(m= IDC(n=  Fibroadenoma (n=
61) 39) 22) 14) 23)

Dice MU 0.82+0.10 0.81+0.11 0.83+0.09 0.81+0.10 0.84+0.09
coefficient DRLS 0.84+0.09 0.82+0.10 0.87+0.07 0.87+0.06 0.84+0.06
ou 0.52+0.27 0.48+0.28 0.57+0.24 0.55+0.28 0.48+0.27
TPF? MU 0.84+0.15 0.80+0.16 0.89+0.11 0.90+0.13 0.80+0.14
DRLS 0.79+0.12 0.76+0.12 0.83+0.12 0.83+0.12 0.77£0.10
ou 0.61+0.06 0.55+0.06 0.700.05 0.68+0.07 0.57+0.04
FPFP MU 0.01+0.02 0.01+0.02 0.02+0.02 0.02+0.02 0.01+0.01
DRLS  0.01£0.02) 0.01£0.02 0.01£0.02 0.01+0.02 0.01£0.01

Oou 0.31+0.06 0.31+0.05 0.27+0.07 0.29+0.09 0.32+0.04




Pathology



Typical Cancer Diagnosis Process

Initial: Radiological Images
e X-Ray, CT scans, MRIs, PET

Confirmation & staging/subtyping: Pathology
e No Surgery: Needle biopsy - fine needle aspiration (FNA) or core biopsy

e Surgery and General Anesthesia: FFPE or Frozen - 1cm?® cube or more tissue
o FFPE: Formalin; Paraffin; Slicing; Staining with H&E
o Frozen: Faster and takes few minutes - during surgery




The Data: Public TCGA (The Cancer Genome Atlas)

zAslgNS;EIa\N;g;{:?T”UTE Projects ~ %® Exploration & Analysis £ Repository Q Quick Search  Manage Sets %) Login = Cart[fJ i GDC Apps

Harmonized Cancer Datasets
Genomic Data Commons Data Portal

Get Started by Exploring:

Il Projects %% | Exploration @& | Analysis S Repository

Q e.g. BRAF, Breast, TCGA-BLCA, TCGA-A5-A0G2

Data Portal Su MMary Data Release 12.0 - August 23, 2018

PROJECTS PRIMARY SITES CASES

40 & 61 & 32,555

FILES GENES MUTATIONS

[1356,381 & 22,147 4 3,142,246




Related work: Classification of Histopathology Images

“Classification and mutation prediction from non—small cell lung cancer
histopathology images using deep learning”
https://www.nature.com/articles/s41591-018-0177-5

MENU v nature P
medicine

Article | Published: 17 September 2018

Classification and mutation prediction
from non-small cell lung cancer
histopathology images using deep learning

Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula, Matija

Snuderl, David Fenyd, Andre L. Moreira, Narges Razavian * & Aristotelis Tsirigos

Nature Medicine 24, 1559-1567 (2018) ~ Download Citation X

Abstract

Visual inspection of histopathology slides is one of the main methods

1need hv nathnlngicte tn aceeee the etacge tyme and eithtvmne af hino


https://www.nature.com/articles/s41591-018-0177-5

Lung Cancer:
Second most common cancer, and leading cause of
cancer death

234,000 new cases in EGFR mutations Approved

:210512 000 . 20% in USA/Europe -II\-/|O|EC;U|&'€|F|V
1000 deaths!” argete

caths 60% in East Asial>* Thegra ies f
80% are Non-Small P or

EGFR-mutant lung

[2]
Cell Lung Cancer cancers!5l

[1] USA 2018 Stats, The American Cancer Society, https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html

[2] The American Cancer Society, https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html
[3] Rosell, Rafael, et al. New England Journal of Medicine 361.10 (2009): 958-967.

[4] https://www.mycancergenome.org/content/disease/lung-cancer/egfr/

[5] Shi, Yuankai, et al. Journal of thoracic oncology 9.2 (2014): 154-162.

[6] https://www.curetoday.com/articles/treatment-for-egfr-mutant-lung-cancer-is-rapidly-expanding



https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html
https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html
https://www.mycancergenome.org/content/disease/lung-cancer/egfr/
https://www.curetoday.com/articles/treatment-for-egfr-mutant-lung-cancer-is-rapidly-expanding

The Data

1,634 whole-slide images (1,176 tumor tissues and 459 normal tissues)
e For Adenocarcinoma, there are also mutations available
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Training, Validation, Test, Aggregation
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Results

AUC after aggregation by...

... average ... percentage of
Bl s redicted ositivel
Clmsification:  {nfaomtin probability lnwsified ties
Normal vs a) Inception v3, fully-trained 0.993 0.990
Tumor [0.974-1.000] [0.969-1.000]
(20x tiles)
b) Inception v3, transfer learning 0.847 0.844
[0.782-0.906] [0.777-0.904]
LUAD vs LUSC c) Inception v3, fully-trained 0.950 0.947
(20x tiles) [0.913-0.980] [0.911-0.978]
d) Same as (c) but aggregation done 0.952 0.949
solely on tiles classified as “tumor” by A [0.915-0.981] [0.912-0.980]
LUAD vs LUSC Inception v3, fully-trained 0.942 0.906
(5x tiles) [0.907-0.971] [0.851-0.951]
Normal 0.984 0.985
[0.947-1.000] [0.953-1.000]
LUAD 0.969 0.970
[0.933-0.994] [0.937-0.993]
3 classes.
vs LUSC at 20x [0.935-0.990] [0.932-0.989]
Micro-average 0.970 0.969
[0.950-0.986] [0.949-0.985]
Macro-average 0.976 0.976
[0.949-0.993] [0.950-0.993]
Normal 0.997 0.988
[0.993-0.998] [0.962-1.000]
LUAD 0.965 0.938
[0.942-0.983] [0.896-0.971]
3 classes. LUSC 0.977 0.964
Normal vs LUAD [0.960-0.991] [0.937-0.986]
vs LUSC at 5x
Micro-average 0.980 0.966
[0.972-0.987] [0.948-0.980]
Macro-average 0.981 0.964
[0.968-0.991] [0.939-0.980]

n=244 slides for LUAD vs LUSC classifiers and n=170 slides for the others, all from 137

patients.



Predicting gene mutational
status from whole-slide

images

True positive

0.5

.F
— EGFR
—— SETBP1
e STK11
— TP53
05 1

False positive

Table 1| AUC achieved by the network trained on mutations
(with 95% Cls)

Mutations  Per-tile Per-slide AUC after aggregation by...

AUC
... average ... percentage of positively
predicted classified tiles
probability
STK11 0.845 0.856 (0.709- 0.842 (0.683-0.967)
(0.838- 0.964)
0.852)
EGFR 0.754 0.826 (0.628- 0.782 (0.516-0.979)
(0.746- 0.979)
0.761)
SETBP1 0.785 0.775 (0.595-  0.752 (0.550-0.927)
(0.776- 0.931)
0.794)
TP53 0.674 0.760 (0.626- 0.754 (0.627-0.870)
(0.666- 0.872)
0.681)
FAT1 0.739 0.750 (0.512-  0.750 (0.491-0.946)
(0.732- 0.940)
0.746)
KRAS 0.814 0.733(0.580- 0.716 (0.552-0.854)
(0.807- 0.857)
0.829)
KEAP1 0.684 0.675 (0.466- 0.659 (0.440-0.856)
(0.670- 0.865)
0.694)
LRP1B 0.640 0.656 (0.513-  0.657 (0.512-0.799)
(0.633- 0.797)
0.647)
FAT4 0.768 0.642 (0.470- 0.640 (0.440-0.856)
(0.760- 0.799)
0.775)
NF1 0.714 0.640 (0.419- 0.632 (0.405-0.845)
(0.704- 0.845)
0.723)

n= 62 slides from 59 patients.



True positive

Generalization to Other Cohorts

NYULMC DATA
e Frozen sections (98 slides)
e FFPE sections (140 slides)
e Needle biopsies (102 slides)

1 S
2 —— LUAD at 5x
. AUC = 0.861, Cl = 0.792-0.919
——— LUSC at 5x
05 [f AUC = 0.975, Cl = 0.945-0.996
E
|
E, LUAD at 20x
AUC = 0.833, Cl = 0.762-0.894
B FFPE o = LUSC at 20x
0 0.5 1 AUC = 0.932, Cl = 0.884-0.971

False positive

True positive

True positive

Frozen

0.5
False positive

Biopsies

1

0.5
False positive

1

= LUAD at 5x

AUC = 0.919, Cl = 0.861-0.949

== | USC at 5x

AUC = 0.977, Cl = 0.949-0.995

LUAD at 20x
AUC = 0.913, Cl = 0.849-0.963

- = LUSC at 20x

AUC = 0.941, Cl = 0.894-0.977

e | LUAD at 5x

AUC = 0.871, Cl = 0.784-0.938

— LUSC at 5x

AUC = 0.928, Cls = 0.871-0.972

LUAD at 20x
AUC = 0.834, Cl = 0.743-0.909

LUSC at 20x
AUC = 0.861, Cl = 0.780-0.928



Comparison to Pathologists

Supplementary Table 3. Inter-pathologists and binary deep-learning method variability

estimated with the Cohen’s Kappa statistic.

Pathologist 1* Pathologist 2**  Pathologist 3*  Consensus Deep-learning
between
pathologists
TCGA | 0.67 0.70 0.70 0.78 0.82

Pathologist 1

Pathologist 2

Pathologist 3

Consensus
between 3
pathologists

Cls=[0.56-8.78]

Cls=[0.60-0.81]

0.52
Cls=[0.39-0.65]

n=170 slides from 137 patients

* thoracic pathologists; ** anatomic pathologist

Cls=[0.59-0.81]

0.55
Cls=[0.42-0.67]

0.78
Cls=[0.69-0.88]

Cls=[0.69-0.88]

0.56
Cls=[0.44-0.69]

0.65
Cls=[0.54-0.77]

0.75
Cls=[65-0.86]

Cls=[0.74-0.91]

0.64
Cls=[0.52-0.75]

0.63
Cls=[0.52-0.75]

0.60
Cls=[0.48-0.72]

0.77
Cls=[0.68-0.87]



Microscopy and Super-resolutions



Cellular Imaging - Latest Updates

Recent advances in fluorescence microscopy:.
e Tagging 100s of RNAs (corresponding to genes), Proteins, etc. in live cells
e “Seeing” across time and space at much higher resolution
e Limits on amount of light that can be given to each batch
e Lightis proportional to Resolution (Similar to X-Ray radiation dose)

Will change the way we understand drug response

Will change the way we understand cellular behaviour

Applications for All Cancers, Alzheimer’s disease, Neurological conditions, etc.



Content-Aware Image Restoration: Pushing the Limits of
Fluorescence Microscopy
https://www.biorxiv.org/content/early/2018/07/03/236463

New Results

Content-Aware Image Restoration: Pushing the Limits of Fluorescence
Microscopy

Martin Weigert, (& Uwe Schmidt, > Tobias Boothe, {2 Andreas Miiller, (=) Alexandr Dibrov,
Akanksha Jain, 1=/ Benjamin Wilhelm, ‘) Deborah Schmidt, (' Coleman Broaddus, ‘2 Sian Culley,
Mauricio Rocha-Martins, (&) Fabian Segovia-Miranda, ‘= Caren Norden, {2 Ricardo Henriques,

Marino Zerial, 1) Michele Solimena, {2 Jochen Rink, () Pavel Tomancak, (' Loic Royer, = Florian Jug,
Eugene W. Myers

doi: https://doi.org/10.1101/236463

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract Info/History Metrics Supplementary material [3 Preview PDF

Abstract

Fluorescence microscopy is a key driver of discoveries in the life-sciences, with
observable phenomena being limited by the optics of the microscope, the chemistry of
the fluorophores, and the maximum photon exposure tolerated by the sample. These
limits necessitate trade-offs between imaging speed, spatial resolution, light
exposure, and imaging depth. In this work we show how image restoration based on

deep learning extends the range of biological phenomena observable by microscopy.


https://www.biorxiv.org/content/early/2018/07/03/236463
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Models for Sequences and Genomics



Biomarkers from Sequential Convolutional Nets

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey,
"Predicting the sequence specificities of DNA-and RNA-binding proteins by deep
learning." Nature biotechnology (2015)

Collaboration: UToronto

Objective: Discover DNA/RNA motifs that bind to many binding proteins, and
predict protein-binding in multiple tasks (in vitro and in vivo)

Data: 240,000 RNA sequences and 207 binding proteins; 40,000 DNA sequences
and 86 binding proteins (transcription factors)



Convolution Model for discovering Motifs and Position
Weight Matrices
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Results

In vitro:

e DNA Specificity prediction; Average AUC 0.726
e RNA Specificity prediction: Average AUC 0.84

Technology
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State of Research In ML for Healthcare
Short term and Long term



Short term: many many standard supervised learning

It's natural & necessary to build several new baselines

Healthcare has recently joined data-heavy fields.

Most baselines in other fields haven’t even been tried here.

We do need to build many many baselines.

New architectures/models aren’t necessarily needed

Need to understand what tasks are actually harder and need more ML
innovations

Outcome of this stage:
e Models that can be deployed in practice: shift focus to integration & system
changes & industry change
e Identification of medical tasks that are actually difficult!
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Each of these arrows learned

e Wil save lives

e Will discover new hypothesis
e Will save money

e Will change industries

Mild cognitive Alzheimer's
impairment disease



What is difficult today?

Tracking and representing and modeling changes over time
e Predicting it, predicting with it, disentangling factors, etc.
e Even ML tools aren’t mature in this area.

Recommending treatments:
e Counterfactual inference & personalized medicine

Rare diseases..

Beyond current tools:
e New sensors & hardwares - Physics & Chemistry!

e Repurposing existing hardware (i.e. MRI pulse sequences, Ultrasounds, etc)
e Embedded sensors



That's it for now!

Email me with follow ups and questions:

Narges.Razavian@nyumc.org

Also, take the next semester’s class:
Deep Learning for Medicine

BMSC-GA 4493 or BMIN-GA 3007



