#### Guest Lecture Machine Learning in Healthcare

#### Narges Razavian Assistant Professor Departments of Radiology & Population Health NYUMC narges.razavian@nyumc.org

Machine Learning November 1st, 2018

#### **This Lecture**

Overview of healthcare & landscape of healthcare data

Some snapshots of research on machine learning in healthcare Early Disease Prediction using EHR time series Medical Imaging: Radiology (X-Rays, Mammograms, MRI, Ultrasound) Pathology (Histopathology) Microscopy Genomics and sequences and text

Thoughts on research trends in short and long term in this field.

### Healthcare in Numbers

What are the top killer diseases? What are the diseases people go to doctors for?

#### "Immature" Causes of Death in 2016, USA



#### Source: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm

#### "Immature" Causes of Death in 2016, USA



Source: https://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm





# NYU Medical School - de-identified database i2b2 (2 years ago)









**Unique Patients** 

#### Healthcare in Action What happens Where and When? What's the constraints of each location?



Emergency Dept: Triage & Stabilization

- → Bleeding/pain/etc
- → internal/external problems
- → Patient awake or unconscious
- Quick diagnosis needed
- Localization of main cause
  - Quick action to give patient time
- Can be: Fast, Noisy, Loud, Mechanical





 $\rightarrow$ 

 $\rightarrow$ 

 $\rightarrow$ 



#### **Diverse Data Modalities**

## Diverse Modalities: Text and Structured data Time Series (NYU Data)



#### Diverse Modalities: Images (NYU data)



#### Diverse Modalities: Genomics (Public GDC data)



#### What else?

#### Questions that Could Use More ML in Healthcare

Early detection, Detection, and Prevention

Automated/Augmented Diagnosis/screening & Lowering medical errors Finding new bio-makers, less invasive, more specific & sensitive, scalable Better clinical trial recruitment - faster drug design

Tracking Treatment Response and Disease Progression Finding, measuring, and visualizing biomarker & changes over time

Low resource settings & where time is limited i.e. ED department Prioritization of patients Lowering missed diagnosis - augmented diagnosis, automations, etc

What else?

# Some snapshots of research on machine learning in healthcare

## Early Disease Prediction using EHR time series









#### **Disease Prediction/Forecasting**



#### Space of machine learning methods

#### Feature interactions

| Complex features | Specified<br>by human<br>experts | Specified by human experts                                                                              | +Learned                                                                                                      |  |  |
|------------------|----------------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|
|                  |                                  | - Standard Regression<br>- Rule Based Expert Systems<br>- Bayesian networks                             | <ul> <li>Decision Trees</li> <li>Bayesian networks with structure learning</li> <li>Random Forests</li> </ul> |  |  |
|                  |                                  | Parameters: Few<br>Data Needed: Small                                                                   | Parameters: Medium<br>Data Needed: Medium/large                                                               |  |  |
|                  | +Learned                         | <ul> <li>Bayesian networks with hidden variables</li> <li>Dimensionality reduction - PCA/ICA</li> </ul> | - Deep learning                                                                                               |  |  |
|                  |                                  | Parameters: Medium<br>Data Needed: Medium                                                               | Parameters: Larges<br>Data Needed: Large/X-Large                                                              |  |  |

#### **Disease Prediction/Forecasting**





- Free text assessments

#### Feature Engineering: ~42,000 features

| 22                                                                                                                               | 39              | 990                                                                      | 16,632                                                                                     | 233                | 224                           | 7x1000                                                                                                                                                                          | 228                   | 32        |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------|
| Di                                                                                                                               | cover<br>abetes | indicator for<br>using<br>Medication<br>groups<br>rage<br>s known<br>ors | indicator for each<br>icd9 diagnosis<br>indicator for<br>each ICD-9<br>procedures<br>group | indi<br>eac<br>gro | ↓<br>cator for<br>h CPT<br>up | Laboratory indicators for<br>Test request<br>Test value high<br>Test value low<br>Test value normal<br>Test value increasing<br>Test value decreasing<br>Test value fluctuating | cator for             |           |
| <ul> <li>All variables except ICD-9 diagnosis evaluated in 6<br/>months, 2 years and entire history prior to T2D onse</li> </ul> |                 |                                                                          |                                                                                            |                    | S<br>set.                     | s<br>Indi                                                                                                                                                                       | pecialty<br>cator for | ∫<br>each |

Population-Level Prediction of Type 2 Diabetes From Claims Data and Analysis of Risk Factors https://www.liebertpub.com/doi/abs/10.1089/big.2015.0020

service place

#### Learning features and Deep Learning/Multitask learning







#### Prediction Quality on the test set of size 98,000 individuals

| ICD9 Code and disease description | $\mathbf{LR}$ | LSTM  | CNN1  | CNN2  | Ens   | Pos  |
|-----------------------------------|---------------|-------|-------|-------|-------|------|
| 585.6 End stage renal disease     | 0.886         | 0.917 | 0.910 | 0.916 | 0.920 | 837  |
| 285.21 Anemia in chr kidney dis   | 0.849         | 0.866 | 0.868 | 0.880 | 0.879 | 1598 |
| 585.3 Chr kidney dis stage III    | 0.846         | 0.851 | 0.857 | 0.858 | 0.864 | 2685 |
| 584.9 Acute kidney failure NOS    | 0.805         | 0.820 | 0.828 | 0.831 | 0.835 | 3039 |
| 250.01  DMI wo cmp nt st uncntrl  | 0.822         | 0.813 | 0.819 | 0.825 | 0.829 | 1522 |
| 250.02 DMII wo cmp uncntrld       | 0.814         | 0.819 | 0.814 | 0.821 | 0.828 | 3519 |
| 593.9 Renal and ureteral dis NOS  | 0.757         | 0.794 | 0.784 | 0.792 | 0.798 | 2111 |
| 428.0 CHF NOS                     | 0.739         | 0.784 | 0.786 | 0.783 | 0.792 | 3479 |
| V053 Need prphyl vc vrl hepat     | 0.731         | 0.762 | 0.752 | 0.780 | 0.777 | 862  |
| 790.93 Elvtd prstate spcf antgn   | 0.666         | 0.758 | 0.761 | 0.768 | 0.772 | 1477 |
| 185 Malign neopl prostate         | 0.627         | 0.757 | 0.751 | 0.761 | 0.768 | 761  |
| 274.9 Gout NOS                    | 0.746         | 0.761 | 0.764 | 0.757 | 0.767 | 1529 |
| 362.52 Exudative macular degen    | 0.687         | 0.752 | 0.750 | 0.757 | 0.765 | 538  |
| 607.84 Impotence, organic orign   | 0.663         | 0.739 | 0.736 | 0.748 | 0.752 | 1372 |
| 511.9 Pleural effusion NOS        | 0.708         | 0.736 | 0.742 | 0.746 | 0.749 | 2701 |
| 616.10 Vaginitis NOS              | 0.692         | 0.736 | 0.736 | 0.746 | 0.747 | 440  |
| 600.01 BPH w urinary obs/LUTS     | 0.648         | 0.737 | 0.737 | 0.738 | 0.747 | 1681 |
| 285.29 Anemia-other chronic dis   | 0.672         | 0.713 | 0.725 | 0.746 | 0.739 | 1075 |
| 346.90 Migrne unsp wo ntrc mgrn   | 0.633         | 0.736 | 0.710 | 0.724 | 0.732 | 471  |
| 427.31 Atrial fibrillation        | 0.687         | 0.725 | 0.728 | 0.733 | 0.736 | 3766 |
| 250.00 DMII wo cmp nt st uncntr   | 0.708         | 0.718 | 0.708 | 0.719 | 0.728 | 3125 |
| 425.4 Prim cardiomyopathy NEC     | 0.683         | 0.718 | 0.719 | 0.722 | 0.726 | 1414 |
| 728.87 Muscle weakness-general    | 0.683         | 0.704 | 0.718 | 0.722 | 0.723 | 4706 |
| 620.2 Ovarian cyst NEC/NOS        | 0.660         | 0.720 | 0.700 | 0.711 | 0.719 | 498  |
| 286.9 Coagulat defect NEC/NOS     | 0.690         | 0.694 | 0.709 | 0.715 | 0.718 | 958  |

#### Overview of some results so far on general NYUMC patient cohort



AUC Retrospective AUC prospective

Disease
### Applicable to many more outcomes and tasks

- Early prediction of childhood obesity
- Predicting diabetes complications
- Predicting risk of re-hospitalization
- Detecting undocumented but existing diseases
- Using lab values only to predict future diseases
- Predicting medication adherence
- Predicting no-shows
- Etc. etc. etc....

• Many industries interested: Hospitals, Insurance companies, Government Medicare/Medicaid, Center for Disease Control, etc.

### Medical Imaging: Radiology (X-rays, Mammograms, MRI, Ultrasound) Pathology Microscopy

## **Plain X-Rays or Radiographs**

Most common & oldest type of radiology image.

Great to show Carbon vs. Calcium

Good for: Bones, Teeth, Chest X-Rays, Mammography, Abdominal X-ray.

Result: 2D image

Risks: Radiation exposure

Opportunities in research:

- Augmented/automatic Diagnosis
- Lowering X-ray dosage

#### **Projectional radiography**



### **Related Papers on Bone X-Ray Radiographs**

MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

#### MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

Pranav Rajpurkar<sup>1,\*</sup>, Jeremy Irvin<sup>1,\*</sup>, Aarti Bagul<sup>1</sup>, Daisy Ding<sup>1</sup>, Tony Duan<sup>1</sup>, Hershel Mehta<sup>1</sup>, Brandon Yang<sup>1</sup>, Kaylie Zhu<sup>1</sup>, Dillon Laird<sup>1</sup>, Robyn L. Ball<sup>2</sup>, Curtis Langlotz<sup>3</sup>, Katie Shpanskaya<sup>3</sup>, Matthew P. Lungren<sup>3,†</sup>, Andrew Y. Ng<sup>1,†</sup>

\*, †Equal Contribution

<sup>1</sup> Department of Computer Science Stanford University {pranavsr, jirvin16}@cs.stanford.edu

> <sup>2</sup>Department of Medicine Stanford University rball@stanford.edu

<sup>3</sup>Department of Radiology Stanford University mlungren@stanford.edu

### MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

Task: determining whether an X-ray study is normal or abnormal. Motivation:

- Musculoskeletal conditions affect more than 1.7 billion people worldwide,
- 30 million emergency department visits annually

Data (Public):

- 14,863 studies from 12,173 patients, with a total of 40,561 multi-view radiographic images.
- Includes: elbow, finger, forearm, hand, humerus, shoulder, and wrist
- Labels from Stanford Hospital (from 2001 to 2012)

Baseline:

- **DenseNet-169** with **Multi-task Cross Entropy Loss** Evaluation:
- Cohen's kappa statistic



#### MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs

#### Leaderboard

Will your model perform as well as radiologists in detecting abnormalities in musculoskeletal X-rays?

| Rank | Date         | Model                                                                                   | Kappa |
|------|--------------|-----------------------------------------------------------------------------------------|-------|
|      |              | Best Radiologist Performance <i>Stanford University</i><br>Rajpurkar & Irvin et al., 17 | 0.778 |
| 1    | Aug 22, 2018 | base-comb3(ensemble) <i>jtz Availink</i>                                                | 0.805 |
| 2    | Sep 14, 2018 | double_res(ensemble model) SCU_MILAB                                                    | 0.804 |
| 3    | Jul 24, 2018 | he_j                                                                                    | 0.775 |
| 4    | Aug 19, 2018 | ianpan (ensemble) <i>RIH 3D Lab</i>                                                     | 0.774 |
| 5    | Jul 24, 2018 | he_j                                                                                    | 0.774 |
| 6    | Jun 17, 2018 | gcm (ensemble) Peking University                                                        | 0.773 |
| 6    | Sep 10, 2018 | ty101 single model                                                                      | 0.773 |
| 7    | Aug 31, 2018 | he_j                                                                                    | 0.764 |
| 7    | Aug 31, 2018 | AIAPlus (ensemble) <i>Taiwan AI Academy</i><br>http://aiacademy.tw                      | 0.764 |
| 8    | Sep 04, 2018 | SER_Net_Baseline (single model) <i>SJTU</i>                                             | 0.764 |
| 9    | Jul 14, 2018 | Trs (single model) SCU_MILAB                                                            | 0.763 |

### **Related paper on Chest X-rays**

"ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases"

> This CVPR paper is the Open Access version, provided by the Computer Vision Foundation. Except for this watermark, it is identical to the version available on IEEE Xplore.

#### ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases

Xiaosong Wang<sup>1</sup>, Yifan Peng<sup>2</sup>, Le Lu<sup>1</sup>, Zhiyong Lu<sup>2</sup>, Mohammadhadi Bagheri<sup>1</sup>, Ronald M. Summers<sup>1</sup> <sup>1</sup>Department of Radiology and Imaging Sciences, Clinical Center, <sup>2</sup> National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892

{xiaosong.wang,yifan.peng,le.lu,luzh,mohammad.bagheri,rms}@nih.gov

#### Abstract

The chest X-ray is one of the most commonly accessible radiological examinations for screening and diagnosis of many lung diseases. A tremendous number of X-ray imaging studies accompanied by radiological reports are accumulated and stored in many modern hospitals' Picture Archiving and Communication Systems (PACS). On the other side, it is still an open question how this type of hospital-size knowledge database containing invaluable imaging informatics (i.e., loosely labeled) can be used to facilitate the data-hungry deep learning paradigms in building truly large-scale high precision computer-aided diagnosis (CAD) systems.



Figure 1. Eight common thoracic diseases observed in chest X-rays that validate a challenging task of fully-automated diagnosis.

"ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases"

Task: Identification & Localization of Thorax Diseases.

Motivation: Reducing medical errors and improving "incidental finding" success.

The data:

- 108,948 frontal view X-ray images of 32,717 unique patients
- Labels from radiology reports. (8 disease labels)

Evaluation: AUC

Baseline: Standard imaging models up to 2017

### "ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases"

| Setting   | Atelectasis                                                                                                     | Cardiomegaly       | Effusion       | Infiltration      | Mass        | Nodule      | Pneumonia      | Pneumothorax |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------|--------------------|----------------|-------------------|-------------|-------------|----------------|--------------|--|--|
|           | Initialization with different pre-trained models                                                                |                    |                |                   |             |             |                |              |  |  |
| AlexNet   | 0.6458                                                                                                          | 0.6925             | 0.6642         | 0.6041            | 0.5644      | 0.6487      | 0.5493         | 0.7425       |  |  |
| GoogLeNet | 0.6307                                                                                                          | 0.7056             | 0.6876         | 0.6088            | 0.5363      | 0.5579      | 0.5990         | 0.7824       |  |  |
| VGGNet-16 | 0.6281                                                                                                          | 0.7084             | 0.6502         | 0.5896            | 0.5103      | 0.6556      | 0.5100         | 0.7516       |  |  |
| ResNet-50 | 0.7069                                                                                                          | 0.8141             | 0.7362         | 0.6128            | 0.5609      | 0.7164      | 0.6333         | 0.7891       |  |  |
|           |                                                                                                                 | Di                 | fferent multi  | -label loss func  | tions       | ,           |                | •            |  |  |
| CEL       | 0.7064                                                                                                          | 0.7262             | 0.7351         | 0.6084            | 0.5530      | 0.6545      | 0.5164         | 0.7665       |  |  |
| W-CEL     | 0.7069                                                                                                          | 0.8141             | 0.7362         | 0.6128            | 0.5609      | 0.7164      | 0.6333         | 0.7891       |  |  |
|           | Table 3. AU                                                                                                     | Cs of ROC curves j | for multi-lab  | el classification | in differen | nt DCNN m   | nodel setting. | 1            |  |  |
| T(IoBB)   | Atelectasis                                                                                                     | Cardiomegaly       | Effusion       | Infiltration      | Mass        | Nodule      | Pneumonia      | Pneumothorax |  |  |
|           |                                                                                                                 |                    | T(Io           | BB) = 0.1         |             |             |                |              |  |  |
| Acc.      | 0.7277                                                                                                          | 0.9931             | 0.7124         | 0.7886            | 0.4352      | 0.1645      | 0.7500         | 0.4591       |  |  |
| AFP       | 0.0823                                                                                                          | 0.0487             | 0.0589         | 0.0426            | 0.0691      | 0.0630      | 0.0691         | 0.0264       |  |  |
|           | T(IoBB                                                                                                          | ) = 0.25 (Two time | es larger on b | oth x and y axi   | s than gro  | und truth B | -Boxes)        |              |  |  |
| Acc.      | 0.5500                                                                                                          | 0.9794             | 0.5424         | 0.5772            | 0.2823      | 0.0506      | 0.5583         | 0.3469       |  |  |
| AFP       | 0.1666                                                                                                          | 0.1534             | 0.1189         | 0.0914            | 0.0975      | 0.0741      | 0.1250         | 0.0487       |  |  |
|           |                                                                                                                 |                    | T(Io           | BB) = 0.5         | 1           |             |                |              |  |  |
| Acc.      | 0.2833                                                                                                          | 0.8767             | 0.3333         | 0.4227            | 0.1411      | 0.0126      | 0.3833         | 0.1836       |  |  |
| AFP       | 0.2703                                                                                                          | 0.2611             | 0.1859         | 0.1422            | 0.1209      | 0.0772      | 0.1768         | 0.0772       |  |  |
|           |                                                                                                                 |                    | T(IoI          | BB) = 0.75        |             |             |                |              |  |  |
| Acc.      | 0.1666                                                                                                          | 0.7260             | 0.2418         | 0.3252            | 0.1176      | 0.0126      | 0.2583         | 0.1020       |  |  |
| AFP       | 0.3048                                                                                                          | 0.3506             | 0.2113         | 0.1737            | 0.1310      | 0.0772      | 0.2184         | 0.0873       |  |  |
|           |                                                                                                                 |                    | T(Io           | BB) = 0.9         |             |             |                |              |  |  |
| Acc.      | 0.1333                                                                                                          | 0.6849             | 0.2091         | 0.2520            | 0.0588      | 0.0126      | 0.2416         | 0.0816       |  |  |
| AFP       | 0.3160                                                                                                          | 0.3983             | 0.2235         | 0.1910            | 0.1402      | 0.0772      | 0.2317         | 0.0904       |  |  |
|           | the second se |                    |                |                   |             |             |                |              |  |  |

| Item #       | OpenI | Ov. | ChestX-ray8 | Ov.   |
|--------------|-------|-----|-------------|-------|
| Report       | 2,435 | -   | 108,948     | -     |
| Annotations  | 2,435 | _   | _           | -     |
| Atelectasis  | 315   | 122 | 5,789       | 3,286 |
| Cardiomegaly | 345   | 100 | 1,010       | 475   |
| Effusion     | 153   | 94  | 6,331       | 4,017 |
| Infiltration | 60    | 45  | 10,317      | 4,698 |
| Mass         | 15    | 4   | 6,046       | 3,432 |
| Nodule       | 106   | 18  | 1,971       | 1,041 |
| Pneumonia    | 40    | 15  | 1,062       | 703   |
| Pneumothorax | 22    | 11  | 2,793       | 1,403 |
| Normal       | 1,379 | 0   | 84,312      | 0     |

Table 4. Pathology localization accuracy and average false positive number for 8 disease classes.

### Follow-up: CheXNet (Also a DenseNet model)

CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning

Pranav Rajpurkar<sup>\*1</sup> Jeremy Irvin<sup>\*1</sup> Kaylie Zhu<sup>1</sup> Brandon Yang<sup>1</sup> Hershel Mehta<sup>1</sup> Tony Duan<sup>1</sup> Daisy Ding<sup>1</sup> Aarti Bagul<sup>1</sup> Robyn L. Ball<sup>2</sup> Curtis Langlotz<sup>3</sup> Katie Shpanskaya<sup>3</sup> Matthew P. Lungren<sup>3</sup> Andrew Y. Ng<sup>1</sup>

#### Abstract

1. Introduction

We develop an algorithm that can detect pneumonia from chest X-rays at a level exceeding practicing radiologists. Our algorithm, CheXNet, is a 121-layer convolutional neural network trained on ChestX-ray14, currently the largest publicly available chest Xray dataset, containing over 100.000 frontalview X-ray images with 14 diseases. Four practicing academic radiologists annotate a test set, on which we compare the performance of CheXNet to that of radiologists. We find that CheXNet exceeds average radiologist performance on the F1 metric. We extend CheXNet to detect all 14 diseases in ChestX-ray14 and achieve state of the art results on all 14 diseases.



Chest X-Ray Image

CheXNet 121-layer CNN

Output Pneumonia Positive (85%)



| Pathology          | Wang et al. $(2017)$ | Yao et al. (2017) | CheXNet (ours) |
|--------------------|----------------------|-------------------|----------------|
| Atelectasis        | 0.716                | 0.772             | 0.8094         |
| Cardiomegaly       | 0.807                | 0.904             | 0.9248         |
| Effusion           | 0.784                | 0.859             | 0.8638         |
| Infiltration       | 0.609                | 0.695             | 0.7345         |
| Mass               | 0.706                | 0.792             | 0.8676         |
| Nodule             | 0.671                | 0.717             | 0.7802         |
| Pneumonia          | 0.633                | 0.713             | 0.7680         |
| Pneumothorax       | 0.806                | 0.841             | 0.8887         |
| Consolidation      | 0.708                | 0.788             | 0.7901         |
| Edema              | 0.835                | 0.882             | 0.8878         |
| Emphysema          | 0.815                | 0.829             | 0.9371         |
| Fibrosis           | 0.769                | 0.767             | 0.8047         |
| Pleural Thickening | 0.708                | 0.765             | 0.8062         |
| Hernia             | 0.767                | 0.914             | 0.9164         |

| F1 Score (95% CI)          |
|----------------------------|
| 0.383 (0.309, 0.453)       |
| $0.356\ (0.282,\ 0.428)$   |
| $0.365\ (0.291,\ 0.435)$   |
| $0.442 \ (0.390, \ 0.492)$ |
| $0.387 \ (0.330, \ 0.442)$ |
| $0.435\ (0.387,\ 0.481)$   |
|                            |

## Criticism of the Dataset (Applies to most datasets)

#### Labels aren't accurate

In all the images, red = clearly wrong label. Orange = I doubt it, I wouldn't report it, but I can't really exclude it. Correlate clinically :p

| Atelectasis                            |                                      | Fibrosis                                        | Cardiomegaly  |           |
|----------------------------------------|--------------------------------------|-------------------------------------------------|---------------|-----------|
|                                        |                                      |                                                 |               |           |
| 00000012 000 00000012 012 00000012 014 | 20202062 011 0000062 010 0000062 010 | 0000001_013 0000001_014 0000001_000 0000001_014 |               |           |
| ne her bit                             |                                      | an babar                                        | 25 25 25 25 2 | The belle |

### Read:<u>https://lukeoakdenrayner.wordpress.com/2017/12/18/the-chestxray14-datas</u> <u>et-problems/</u>

## Mammograms: Low-dose X-Rays

Screening Mammograms: 4 images Diagnostic Mammograms: More than 4 images

Currently recommended once every 2 years for every 50-74 yo women.

Does not work for dense breasts. (Many young patients or asian ethnicities)

• Ultrasound



### Related paper on automatic Mammography Screening

#### High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

Krzysztof J. Geras<sup>1,3</sup>, Stacey Wolfson<sup>3</sup>, Yiqiu Shen<sup>1</sup>, Nan Wu<sup>1</sup>, S. Gene Kim<sup>3,4</sup>, Eric Kim<sup>3</sup>, Laura Heacock<sup>3</sup>, Ujas Parikh<sup>3</sup>, Linda Moy<sup>3,4</sup>, Kyunghyun Cho<sup>1,2,5</sup>

03.07047v3 [cs.CV] 28 Jun 2018

Abstract-Advances in deep learning for natural images have prompted a surge of interest in applying similar techniques to medical images. The majority of the initial attempts focused on replacing the input of a deep convolutional neural network with a medical image, which does not take into consideration the fundamental differences between these two types of images. Specifically, fine details are necessary for detection in medical images, unlike in natural images where coarse structures matter most. This difference makes it inadequate to use the existing network architectures developed for natural images, because they work on heavily downscaled images to reduce the memory requirements. This hides details necessary to make accurate predictions. Additionally, a single exam in medical imaging often comes with a set of views which must be fused in order to reach a correct conclusion. In our work, we propose to use a multi-view deep convolutional neural network that handles a set of high-resolution medical images. We evaluate it on largescale mammography-based breast cancer screening (BI-RADS prediction) using 886,000 images. We focus on investigating the impact of the training set size and image size on the prediction accuracy. Our results highlight that performance increases with the size of training set, and that the best performance can only be achieved using the original resolution. In the reader study, performed on a random subset of the test set, we confirmed the efficacy of our model, which achieved performance comparable to a committee of radiologists when presented with the same data.

Index Terms—breast cancer screening, deep convolutional neural networks, deep learning, machine learning, mammography screening interval for mammograms has been the subject of public debate with different professional societies offering varying guidelines for mammographic screening [2], [3], [4], [5]. In particular, there has been public discussion regarding the potential harms of screening. These harms include false positive recalls and false positive biopsies as well as anxiety caused by recall for diagnostic testing after a screening exam. Overall, the recall rate following a screening mammogram is between 10-15%. This equates to about 3.3 to 4.5 million callback exams for additional testing [6].

The vast majority of the women asked to return following an inconclusive mammogram undergo another mammogram and/or ultrasound for clarification. Most of these false positive findings are found to represent normal breast tissue. Only 10% to 20% of women who have an abnormal screening mammogram are recommended to undergo a biopsy. Only 20-40% of these biopsies yield a diagnosis of cancer [7]. In 2014, over 39 million screening and diagnostic mammography exams were performed in the US. Therefore, in addition to the anxiety from undergoing a false positive mammogram, there are significant costs associated with unnecessary follow ups and biopsies. Clearly, there is an unmet need to shift the balance of routine breast cancer screening towards more benefit and less harm.

## High-Resolution Breast Cancer Screening with Multi-View Deep Convolutional Neural Networks

Data: 886,000 images, 129,208 unique patients

|            | BI-RADS 0     | <b>BI-RADS</b> 1 | <b>BI-RADS 2</b> |
|------------|---------------|------------------|------------------|
| Training   | 21946 / 95471 | 74832 / 327035   | 67446 / 298680   |
| Validation | 2634 / 11471  | 11542 / 50627    | 10376 / 46178    |
| Test       | 1341 / 5871   | 5986 / 26213     | 5595 / 24891     |

Labels: BI-RADs scores

#### Baseline: Custom CNN

#### **Evaluation: AUC & Reader Study**

|              | radiologists | MV-DCN | radiologists +<br>MV-DCN |
|--------------|--------------|--------|--------------------------|
| 0 vs. others | 0.650        | 0.547  | 0.653                    |
| 1 vs. others | 0.765        | 0.757  | 0.792                    |
| 2 vs. others | 0.699        | 0.759  | 0.759                    |
| macAUC       | 0.704        | 0.688  | 0.735                    |

| layer       | kernel size     | stride | #maps | repetition |
|-------------|-----------------|--------|-------|------------|
| global      | average pooling | 256    | ]     |            |
| convolution | 3×3             | 1×1    | 256   | ×3         |
| max pooling | 2×2             | 2×2    | 128   | 7          |
| convolution | 3×3             | 1×1    | 128   | × 3        |
| max pooling | 2×2             | 2×2    | 128   | ]          |
| convolution | 3×3             | 1×1    | 128   | × 3        |
| max pooling | 2×2             | 2×2    | 64    | 1          |
| convolution | 3×3             | 1×1    | 64    | × 2        |
| convolution | 3×3             | 2×2    | 64    |            |
| max pooling | 3×3             | 3×3    | 32    |            |
| convolution | 3×3             | 2×2    | 32    | ]          |
|             | 1               | 7      |       |            |

Fig. 2. Description of one deep convolutional network column for a single view. It transforms the input view (a gray-scale image) into a 256-dimensional vector.

| • [ | Classifier $p(y x)$       |                                           |       |       |  |  |  |  |  |
|-----|---------------------------|-------------------------------------------|-------|-------|--|--|--|--|--|
| [   | Fully co                  | Fully connected layer (1024 hidden units) |       |       |  |  |  |  |  |
| [   | Concatenation (256×4 dim) |                                           |       |       |  |  |  |  |  |
| ] [ | DCN                       | DCN                                       | DCN   | DCN   |  |  |  |  |  |
| [   | L-CC                      | R-CC                                      | L-MLO | R-MLO |  |  |  |  |  |

Fig. 3. An overview of the proposed multi-view deep convolutional network. DCN refers to the convolutional network network column from Figure 2. The arrow indicates the direction of information flow.

## Magnetic Resonance Imaging (MRI)

Watch (25 mins): <a href="https://www.youtube.com/watch?v=djAxjtN\_7VE">https://www.youtube.com/watch?v=djAxjtN\_7VE</a>

- Protons (Hydrogen nuclei) rotate randomly.
- A rotating positive charge creates magnetic field.
- If put under a bigger magnetic field, the proton spins somewhat lines-up.
- If exposed to radio-frequency proportional to the magnetic field, they flip.
- As the radio-frequency is removed, they emit a measurable signal (Phase & Frequency & Magnitude) as they go back.
  - Fat has different reaction to this removal vs Water



- **Pulse Sequence:** Order of applying and removing radio-frequency.
- Can localize each measured signal by creating asymmetric large magnetic waves.
- MRI signal is originally captured in Fourier Space
- Currently 1.5 T, 3 T, 7 Tesla clinically available.

### Pulse Sequences: T1 vs T2 vs FLAIR vs DTI vs ...







**T2:** Brighter: Water Darker: Fat tissue





DTI:

Measures of Brownian motion of water molecules Can image direction of nerve fibers Useful for tumor deformation studies

### MRI is originally in Fourier Space - called K-Space



### Missing data in K-space leads to pixel space artifacts







### **Issues and Potentials for Research**

### Improving Acquisition time & Image reconstruction

15/20 minutes stuck inside a tube: too long!

### **Diagnosis and automation:**

2D and 3D classifiers, localization, segmentation Time series alignment, classification, visualization

#### **Advanced Imaging Invention**

MRI fingerprinting and diagnosis

### Segmentation of MRIs: Brain

#### "QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds"

#### **QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds**

Abhijit Guha Roy, Sailesh Conjeti, Nassir Navab and Christian Wachinger

#### Affiliations:

 A. Guha Roy, C. Wachinger
 Laboratory for Artificial Intelligence in Medical Imaging (AI-Med),
 Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy,
 Ludwig-Maximilian-University,
 Waltherstr. 23, 80337 Munich, Germany

A. Guha Roy, S. Conjeti, N. Navab

Chair for Computer Aided Medical Procedures, Department of Informatics Technical University of Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany.

S. Conjeti

German Center for Neurodegenerative Diseases (DZNE)

### "QuickNAT: Segmenting MRI Neuroanatomy in 20 seconds"

Motivation:

- Accurate brain structural segmentation is central to nearly all neuroimaging analyses.
- Freesurfer takes 2-4 hours to segment a volume.

Task: Segmentation of 40+ regions per volume

Data: ADNI Auxiliary data & MICCAI brain segmentation challenge (30 manual segmented volumes)

Baseline: Variant of U-net

Loss function: Weighted cross entropy & Weighted Dice loss  $Dice = \frac{2 \cdot |mask| \cap prediction|}{|mask| + |prediction|}$ 



(i) Ground Truth







(b) Multi-View Aggregation for final prediction



#### (b)



(i) Ground Truth



(ii) QuickNAT (Only Manual)



(iii) PICSL



(iv) QuickNAT (Fine-tuned)









### "End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification"

https://arxiv.org/pdf/1810.00523.pdf

#### End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification

Soheil Esmaeilzadeh<sup>1</sup>, Dimitrios Ioannis Belivanis<sup>1</sup>, Kilian M. Pohl<sup>2</sup>, and Ehsan Adeli<sup>1</sup>

<sup>1</sup>Stanford University <sup>2</sup>SRI International {soes, dbelivan, eadeli}@stanford.edu kilian.pohl@sri.com

Abstract. As shown in computer vision, the power of deep learning lies in automatically learning relevant and powerful features for any perdition task, which is made possible through end-to-end architectures. However, deep learning approaches applied for classifying medical images do not adhere to this architecture as they rely on several pre- and post-processing steps. This shortcoming can be explained by the relatively small number of available labeled subjects, the high dimensionality of neuroimaging data, and difficulties in interpreting the results of deep learning methods. In this paper, we propose a simple 3D Convolutional Neural Networks and exploit its model parameters to tailor the end-to-end architecture for the diagnosis of Alzheimer's disease (AD). Our model can diagnose AD with an accuracy of 94.1% on the popular ADNI dataset using only MRI data, which outperforms the previous state-of-the-art. Based on the learned model, we identify the disease biomarkers, the results of which were in accordance with the literature. We further transfer the learned model to diagnose mild cognitive impairment (MCI), the prodromal stage of AD, which yield better results compared to other methods.

V1 [cs.CV] 1 Oct 2018

# "End-To-End Alzheimer's Disease Diagnosis and Biomarker Identification"

Task: Differentiate between AD, MCI, Normal

Dataset: ADNI (publicly available) - small-ish

Table 1: ADNI-1 subjects demographic information.

| SSE | X | unt |                | )<br>) | Age  |      |      |      |
|-----|---|-----|----------------|--------|------|------|------|------|
| Cla | Š | Col | mean±std       | min    | 25%  | 50%  | 75%  | max  |
| AD  | M | 97  | $75.0\pm7.9$   | 55.2   | 70.8 | 75.3 | 80.4 | 91.0 |
|     | F | 103 | 76.1±7.4       | 56.5   | 71.1 | 77.0 | 82.3 | 87.9 |
| MOT | M | 265 | $75.4\pm7.3$   | 54.6   | 71.0 | 75.4 | 80.7 | 89.8 |
| MCI | F | 146 | $73.6\pm7.5$   | 55.2   | 69.1 | 74.3 | 79.7 | 86.2 |
| NC  | M | 112 | 76.1±4.7       | 62.2   | 72.5 | 75.8 | 78.5 | 89.7 |
|     | F | 118 | $75.8{\pm}5.2$ | 60.0   | 72.1 | 75.6 | 79.1 | 87.7 |

Demographic (Age, Gender) Input L<sub>1</sub> L<sub>2</sub> L<sub>3</sub> L<sub>4</sub> L<sub>5</sub> L<sub>6</sub> L<sub>7</sub> L<sub>6</sub> L<sub>10</sub> Output

Fig. 2: 3D-CNN architecture used in this paper. The blue cubes  $(L_1, L_2, L_4, L_5, L_7, and L_8)$  are convolutional layers; Orange cubes  $(L_3, L_6, and L_9)$  are max-pooling layers; and the last two layers are fully connected (FC) layers.

Architecture: 3D CNN - vanilla 3D

### **Results & Visualizations**

Table 2: Ablation tests: testing performance comparison of different models (last row is our model). The comparison includes the Accuracy (Acc),  $F_2$  score, Precision (Pre), and Recall (Rec) of all methods (Reg: Regularization, D/O: Drop-Out, Aug: Augmentation).

| Model                     | Simple |                |      |      | Complex |                |      |      |
|---------------------------|--------|----------------|------|------|---------|----------------|------|------|
| Wodel                     | Acc%   | $\mathbf{F}_2$ | Pre  | Rec  | Acc%    | $\mathbf{F}_2$ | Pre  | Rec  |
| 3D-CNN                    | 68.7   | 0.71           | 0.68 | 0.72 | 66.5    | 0.69           | 0.67 | 0.70 |
| 3D-CNN+Reg                | 77.6   | 0.77           | 0.74 | 0.78 | 77.4    | 0.75           | 0.72 | 0.76 |
| 3D-CNN+Reg+D/O            | 83.1   | 0.811          | 0.78 | 0.82 | 79.7    | 0.82           | 0.79 | 0.84 |
| 3D-CNN+Reg+D/O+Aug (Ours) | 94.1   | 0.93           | 0.92 | 0.94 | 88.3    | 0.89           | 0.88 | 0.91 |



90.8

91.1

94.1 0.94

N/A N/A

0.88

93.9 0.94

0.93

0.93

0.91

[3]

[10]

[5]

Ours

MRI

MRI

MRI

MRI



to the number of epochs for our 3D-CNN.



Fig. 4: Relative importance of different voxels associated with AD diagnosis.

| Table 4: Testing | performance f | or three-cla | ss Alzheimer | classification. |
|------------------|---------------|--------------|--------------|-----------------|
|------------------|---------------|--------------|--------------|-----------------|

| Mathad                                | Simple |                |      |      | Complex |                |      |      |
|---------------------------------------|--------|----------------|------|------|---------|----------------|------|------|
| Method                                | Acc%   | $\mathbf{F}_2$ | Pre  | Rec  | Acc%    | $\mathbf{F}_2$ | Pre  | Rec  |
| 3D-CNN+D/O+Reg+with learning transfer | 61.1   | 0.62           | 0.59 | 0.63 | 57.2    | 0.59           | 0.55 | 0.61 |
| 3D-CNN+D/O+Reg+w/o learning transfer  | 0.54   | 53.4           | 0.49 | 0.55 | 48.3    | 0.50           | 0.45 | 0.52 |

## Ultrasound Imaging or Sonography

Sound waves with frequencies - higher than those audible to humans (>20,000 Hz)

provides images in real-time

No radiation and portable

Limits on its field of view: Difficult to 'see' behind Bones and Air (for now) Can be used to see: Elasticity of tissue, 3D shape, Tissue maps





@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED

## Related work on Segmenting Tumors in Ultrasound

"Automated and real-time segmentation of suspicious breast masses using convolutional neural network"

### https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955504/

View this Article | Submit to PLOS | Get E-Mail Alerts | Contact Us

PLoS One. 2018; 13(5): e0195816. Published online 2018 May 16. doi: [10.1371/journal.pone.0195816] PMCID: PMC5955504 PMID: <u>29768415</u>

### Automated and real-time segmentation of suspicious breast masses using convolutional neural network

<u>Viksit Kumar</u>, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing,<sup>#1</sup> <u>Jeremy M. Webb</u>, Data curation, Formal analysis, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing,<sup>#2</sup> <u>Adriana Gregory</u>, Data curation, Formal analysis, Methodology, Software, Validation, Visualization, Writing – original draft, Writing – review & editing,<sup>2</sup> <u>Max Denis</u>, Conceptualization, Investigation, Methodology, Writing – original draft,<sup>2,π</sup> <u>Duane D. Meixner</u>, Data curation, Visualization, Writing – original draft,<sup>2,π</sup> <u>Duane D. Meixner</u>, Data curation, Project administration, Supervision, Visualization, Writing – review & editing,<sup>2</sup> <u>Mostafa Fatemi</u>, Conceptualization, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing – review & editing,<sup>1</sup> and <u>Azra Alizad</u>, Conceptualization, Data curation, Funding acquisition, Investigation, Methodology, Project administration, Resources, Supervision, Validation, Writing – review & editing<sup>2,\*</sup>

#### Yong Fan, Editor

<sup>1</sup> Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
<sup>2</sup> Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America

University of Pennsylvania Perelman School of Medicine, UNITED STATES

<sup>#</sup>Contributed equally.

Competing Interests: The authors have declared that no competing interests exist.

<sup>II</sup>Current address: Physical and Life Sciences Solutions LLC, Randolph, Massachusetts, United States of America \* E-mail: <u>alizad.azra@mayo.edu</u>

Author information V Article notes > Copyright and License information > Disclaimen

### "Automated and real-time segmentation of suspicious breast masses using convolutional neural network"

Motivation: Detection and Localization of tumors

#### Model: Standard U-Net

| Data |   |
|------|---|
| Dala | - |

| BI-RADS | No. of Patients in Training and Validation Set | No. of Patients in Testing Set |
|---------|------------------------------------------------|--------------------------------|
| 2       | 3                                              | 1                              |
| 3       | 2                                              | 10                             |
| 4       | 155                                            | 35                             |
| 5       | 41                                             | 15                             |
| 6       | 6                                              | 0                              |

BI-RADS distribution of patients in training/validation and test sets.

#### **Evaluation: Dice Loss**

| Metrics          |      | All cases (n =<br>61) | Benign (n =<br>39) | Malignant (n =<br>22) | IDC (n =<br>14) | Fibroadenoma (n =<br>23) |
|------------------|------|-----------------------|--------------------|-----------------------|-----------------|--------------------------|
| Dice             | MU   | 0.82±0.10             | 0.81±0.11          | 0.83±0.09             | 0.81±0.10       | 0.84±0.09                |
| coefficient      | DRLS | 0.84±0.09             | 0.82±0.10          | $0.87{\pm}0.07$       | 0.87±0.06       | 0.84±0.06                |
|                  | OU   | 0.52±0.27             | 0.48±0.28          | 0.57±0.24             | 0.55±0.28       | 0.48±0.27                |
| TPF <sup>a</sup> | MU   | 0.84±0.15             | 0.80±0.16          | 0.89±0.11             | 0.90±0.13       | 0.80±0.14                |
|                  | DRLS | 0.79±0.12             | 0.76±0.12          | 0.83±0.12             | 0.83±0.12       | 0.77±0.10                |
|                  | OU   | 0.61±0.06             | 0.55±0.06          | $0.70{\pm}0.05$       | $0.68 \pm 0.07$ | 0.57±0.04                |
| FPF <sup>b</sup> | MU   | 0.01±0.02             | 0.01±0.02          | $0.02 \pm 0.02$       | $0.02 \pm 0.02$ | $0.01 \pm 0.01$          |
|                  | DRLS | 0.01±0.02)            | 0.01±0.02          | 0.01±0.02             | 0.01±0.02       | $0.01 \pm 0.01$          |
|                  | OU   | 0.31±0.06             | 0.31±0.05          | 0.27±0.07             | 0.29±0.09       | 0.32±0.04                |



## Pathology

## **Typical Cancer Diagnosis Process**

Initial: Radiological Images

• X-Ray, CT scans, MRIs, PET

Confirmation & staging/subtyping: Pathology

- No Surgery: Needle biopsy fine needle aspiration (FNA) or core biopsy
- Surgery and General Anesthesia: FFPE or Frozen 1cm<sup>3</sup> cube or more tissue
  - FFPE: Formalin; Paraffin; Slicing; Staining with H&E
  - Frozen: Faster and takes few minutes during surgery



## The Data: Public TCGA (The Cancer Genome Atlas)



### Related work: Classification of Histopathology Images

"Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning"

https://www.nature.com/articles/s41591-018-0177-5



Article | Published: 17 September 2018

Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning

Nicolas Coudray, Paolo Santiago Ocampo, Theodore Sakellaropoulos, Navneet Narula, Matija Snuderl, David Fenyö, Andre L. Moreira, Narges Razavian <sup>™</sup> & Aristotelis Tsirigos <sup>™</sup>

Nature Medicine 24, 1559–1567 (2018) Download Citation 🕹

#### Abstract

Visual inspection of histopathology slides is one of the main methods used by pathologists to assess the stage type and subtype of lung

### Lung Cancer: Second most common cancer, and leading cause of cancer death

234,000 new cases in 2018

**154,000** deaths<sup>[1]</sup> **80%** are *Non-Small* Cell Lung Cancer<sup>[2]</sup>

### **EGFR** mutations

20% in USA/Europe

**60%** in East Asia<sup>[3-4]</sup>

Approved **Molecularly** Targeted Therapies for EGFR-mutant lung cancers<sup>[5-6]</sup>

[1] USA 2018 Stats, The American Cancer Society, https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/key-statistics.html [2] The American Cancer Society, https://www.cancer.org/cancer/non-small-cell-lung-cancer/about/what-is-non-small-cell-lung-cancer.html [3] Rosell, Rafael, et al. New England Journal of Medicine 361.10 (2009): 958-967. [4] https://www.mycancergenome.org/content/disease/lung-cancer/egfr/ [5] Shi, Yuankai, et al. Journal of thoracic oncology 9.2 (2014): 154-162. [6] https://www.curetoday.com/articles/treatment-for-egfr-mutant-lung-cancer-is-rapidly-expanding

### The Data

1,634 whole-slide images (1,176 tumor tissues and 459 normal tissues)

• For Adenocarcinoma, there are also mutations available


# Training, Validation, Test, Aggregation



#### AUC after aggregation by...

# **Results**

|                |             | average                  | percentage of                  |
|----------------|-------------|--------------------------|--------------------------------|
| Classification | Information | predicted<br>probability | positively<br>classified tiles |

| Normal vs                                      | a) Inception v3, fully-trained                         | 0.993         | 0.990         |
|------------------------------------------------|--------------------------------------------------------|---------------|---------------|
| Tumor<br>(20x tiles)                           |                                                        | [0.974-1.000] | [0.969-1.000] |
|                                                | b) Inception v3, transfer learning                     | 0.847         | 0.844         |
|                                                | (20) (1.2) WEDDLARD (1995) SHEAP (1992) ADDRESS (1994) | [0.782-0.906] | [0.777-0.904] |
| LUAD vs LUSC<br>(20x tiles)                    | c) Inception v3, fully-trained                         | 0.950         | 0.947         |
|                                                |                                                        | [0.913-0.980] | [0.911-0.978] |
|                                                | d) Same as (c) but aggregation done                    | 0.952         | 0.949         |
|                                                | solely on tiles classified as "tumor" by A             | [0.915-0.981] | [0.912-0.980] |
| LUAD vs LUSC                                   | Inception v3, fully-trained                            | 0.942         | 0.906         |
| (5x tiles)                                     |                                                        | [0.907-0.971] | [0.851-0.951] |
|                                                | Normal                                                 | 0.984         | 0.985         |
|                                                |                                                        | [0.947-1.000] | [0.953-1.000] |
|                                                | LUAD                                                   | 0.969         | 0.970         |
| 3 classes.<br>Normal vs LUAD<br>vs LUSC at 20x |                                                        | [0.933-0.994] | [0.937-0.993] |
|                                                | LUSC                                                   | 0.966         | 0.964         |
|                                                |                                                        | [0.935-0.990] | [0.932-0.989] |
|                                                | Micro-average                                          | 0.970         | 0.969         |
|                                                |                                                        | [0.950-0.986] | [0.949-0.985] |
|                                                | Macro-average                                          | 0.976         | 0.976         |
|                                                |                                                        | [0.949-0.993] | [0.950-0.993] |
|                                                | Normal                                                 | 0.997         | 0.988         |
| 3 classes.<br>Normal vs LUAD<br>vs LUSC at 5x  |                                                        | [0.993-0.998] | [0.962-1.000] |
|                                                | LUAD                                                   | 0.965         | 0.938         |
|                                                |                                                        | [0.942-0.983] | [0.896-0.971] |
|                                                | LUSC                                                   | 0.977         | 0.964         |
|                                                |                                                        | [0.960-0.991] | [0.937-0.986] |
|                                                | Micro-average                                          | 0.980         | 0.966         |
|                                                |                                                        | [0.972-0.987] | [0.948-0.980] |
|                                                | Macro-average                                          | 0.981         | 0.964         |
|                                                |                                                        | [0.968-0.991] | [0.939-0.980] |

n=244 slides for LUAD vs LUSC classifiers and n=170 slides for the others, all from 137 patients.

# Predicting gene mutational status from whole-slide images



 
 Table 1 | AUC achieved by the network trained on mutations (with 95% CIs)

| Mutations | Per-tile<br>AUC            | Per-slide AUC after aggregation by  |                                              |  |
|-----------|----------------------------|-------------------------------------|----------------------------------------------|--|
|           |                            | average<br>predicted<br>probability | percentage of positively<br>classified tiles |  |
| STK11     | 0.845<br>(0.838-<br>0.852) | 0.856 (0.709-<br>0.964)             | 0.842 (0.683-0.967)                          |  |
| EGFR      | 0.754<br>(0.746-<br>0.761) | 0.826 (0.628-<br>0.979)             | 0.782 (0.516-0.979)                          |  |
| SETBP1    | 0.785<br>(0.776-<br>0.794) | 0.775 (0.595-<br>0.931)             | 0.752 (0.550-0.927)                          |  |
| ТР53      | 0.674<br>(0.666-<br>0.681) | 0.760 (0.626-<br>0.872)             | 0.754 (0.627-0.870)                          |  |
| FAT1      | 0.739<br>(0.732-<br>0.746) | 0.750 (0.512-<br>0.940)             | 0.750 (0.491-0.946)                          |  |
| KRAS      | 0.814<br>(0.807-<br>0.829) | 0.733 (0.580-<br>0.857)             | 0.716 (0.552-0.854)                          |  |
| KEAP1     | 0.684<br>(0.670-<br>0.694) | 0.675 (0.466-<br>0.865)             | 0.659 (0.440-0.856)                          |  |
| LRP1B     | 0.640<br>(0.633-<br>0.647) | 0.656 (0.513-<br>0.797)             | 0.657 (0.512-0.799)                          |  |
| FAT4      | 0.768<br>(0.760-<br>0.775) | 0.642 (0.470-<br>0.799)             | 0.640 (0.440-0.856)                          |  |
| NF1       | 0.714<br>(0.704-<br>0.723) | 0.640 (0.419-<br>0.845)             | 0.632 (0.405-0.845)                          |  |

n = 62 slides from 59 patients

EGFR

SETBP1

STK11

**TP53** 

# Generalization to Other Cohorts

LUAD at 5x

LUSC at 5x

LUAD at 20x

LUSC at 20x

#### NYULMC DATA

b

True positive

0.5

0

0

- Frozen sections (98 slides)
- FFPE sections (140 slides)
- Needle biopsies (102 slides)

FFPE

0.5

False positive



# **Comparison to Pathologists**

Supplementary Table 3. Inter-pathologists and binary deep-learning method variability estimated with the Cohen's Kappa statistic.

|                                        | Pathologist 1*          | Pathologist 2**         | Pathologist 3*          | Consensus<br>between<br>pathologists | Deep-learning           |
|----------------------------------------|-------------------------|-------------------------|-------------------------|--------------------------------------|-------------------------|
| TCGA                                   | 0.67<br>Cls=[0.56-8.78] | 0.70<br>Cls=[0.60-0.81] | 0.70<br>Cls=[0.59-0.81] | 0.78<br>Cls=[0.69-0.88]              | 0.82<br>Cls=[0.74-0.91] |
| Pathologist 1                          |                         | 0.52<br>Cls=[0.39-0.65] | 0.55<br>Cls=[0.42-0.67] | 0.56<br>Cls=[0.44-0.69]              | 0.64<br>Cls=[0.52-0.75] |
| Pathologist 2                          |                         |                         | 0.78<br>Cls=[0.69-0.88] | 0.65<br>Cls=[0.54-0.77]              | 0.63<br>Cls=[0.52-0.75] |
| Pathologist 3                          |                         |                         |                         | 0.75<br>Cls=[65-0.86]                | 0.60<br>Cls=[0.48-0.72] |
| Consensus<br>between 3<br>pathologists |                         |                         |                         |                                      | 0.77<br>Cls=[0.68-0.87] |

*n*=170 slides from 137 patients \* thoracic pathologists; \*\* anatomic pathologist

# **Microscopy and Super-resolutions**

# Cellular Imaging - Latest Updates

Recent advances in *fluorescence microscopy*:

- Tagging 100s of RNAs (corresponding to genes), Proteins, etc. in live cells
- "Seeing" across time and space at much higher resolution
- Limits on amount of light that can be given to each batch
- Light is proportional to Resolution (Similar to X-Ray radiation dose)

Will change the way we understand <u>drug response</u>

Will change the way we understand <u>cellular behaviour</u>

Applications for All Cancers, Alzheimer's disease, Neurological conditions, etc.

# Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy

#### https://www.biorxiv.org/content/early/2018/07/03/236463

#### New Results

### Content-Aware Image Restoration: Pushing the Limits of Fluorescence Microscopy

19 Martin Weigert, 19 Uwe Schmidt, 19 Tobias Boothe, 19 Andreas Müller, 19 Alexandr Dibrov,
19 Akanksha Jain, 19 Benjamin Wilhelm, 19 Deborah Schmidt, 19 Coleman Broaddus, 19 Siân Culley,
19 Maurício Rocha-Martins, 19 Fabián Segovia-Miranda, 19 Caren Norden, 19 Ricardo Henriques,
19 Marino Zerial, 19 Michele Solimena, 19 Jochen Rink, 19 Pavel Tomancak, 19 Loic Royer, 19 Florian Jug,
19 Eugene W. Myers
doi: https://doi.org/10.1101/236463

This article is a preprint and has not been peer-reviewed [what does this mean?].

Abstract Info/History Metrics Supplementary material Preview PDF

#### Abstract

Fluorescence microscopy is a key driver of discoveries in the life-sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how image restoration based on deep learning extends the range of biological phenomena observable by microscopy.



# Models for Sequences and Genomics

# **Biomarkers from Sequential Convolutional Nets**

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey, "*Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning.*" Nature biotechnology (2015)

Collaboration: UToronto

Objective: Discover DNA/RNA motifs that bind to many binding proteins, and predict protein-binding in multiple tasks (in vitro and in vivo)

Data: 240,000 RNA sequences and 207 binding proteins; 40,000 DNA sequences and 86 binding proteins (transcription factors)

# Convolution Model for discovering Motifs and Position Weight Matrices



## Results

In vitro:

- DNA Specificity prediction; Average AUC 0.726
- RNA Specificity prediction: Average AUC 0.84



# State of Research In ML for Healthcare Short term and Long term

# Short term: many many standard supervised learning

It's natural & necessary to build several new baselines

- Healthcare has recently joined data-heavy fields.
- Most baselines in other fields haven't even been tried here.
- We do need to build many many baselines.
- New architectures/models aren't necessarily needed
- Need to understand what tasks are *actually* harder and need more ML innovations

Outcome of this stage:

- Models that can be deployed in practice: shift focus to integration & system changes & industry change
- Identification of medical tasks that are actually difficult!





# What is difficult today?

Tracking and representing and modeling *changes* over time

- Predicting it, predicting with it, disentangling factors, etc.
- Even ML tools aren't mature in this area.

Recommending treatments:

• Counterfactual inference & personalized medicine

Rare diseases..

Beyond current tools:

- New sensors & hardwares Physics & Chemistry!
- Repurposing existing hardware (i.e. MRI pulse sequences, Ultrasounds, etc)
- Embedded sensors

# That's it for now!

Email me with follow ups and questions:

Narges.Razavian@nyumc.org

Also, take the next semester's class:

**Deep Learning for Medicine** 

BMSC-GA 4493 or BMIN-GA 3007